SAT	Applications	Sugar	Summary
SAT Sa	luck and the Ar		
SAT 50	over and its Ap	oplication to	
Co	mbinatorial Pr	oblems	
	Naovuki Tamur	2	
	NaOyuki Talliul	a	

Kobe University

実験計画法およびその周辺の組合せ構造 2014 December 14th, 2014

Sugar

Summary

Contents

- 1 SAT Problems and SAT Solvers
 - SAT Problems
 - SAT Solvers

SAT

- Don Knuth's TAOCP
- 2 Applications to Combinatorial Problems
 - Graph Coloring Problem
 - Covering Array
 - Ramsey Number
 - Erdös's Discrepancy Conjecture
- 3 Sugar: a SAT-based Constraint Solver
- ④ Summary

http://bach.istc.kobe-u.ac.jp/papers/pdf/kinosaki2014.pdf

SAT Problems and SAT Solvers

SAT (Boolean satisfiability testing) is a problem to decide whether a given Boolean formula has any satisfying truth assignment.

Sugar

• SAT is a central problem in Computer Science both theoretically and practically.

Applications

- SAT is the first NP-complete problem [Cook 1971].
- SAT has very efficient implementation (MiniSat, etc.).
- SAT-based approach is becoming popular in many areas.
 - Intel core I7 processor design [Kaivola+, CAV 2009]
 - Windows 7 device drivers verification with Z3 [De Moura and Bjorner, IJCAR 2010]
 - Software component dependency analysis in Eclipse [Le Berre and Rapicault, IWOCE 2009]

Summarv

SAT-based Systems

Planning (SATPLAN, Blackbox) [Kautz & Selman 1992]

Applications

Sugar

- Automatic Test Pattern Generation [Larrabee 1992]
- Job-shop Scheduling [Crawford & Baker 1994]
- Software Specification (Alloy) (1998)
- Bounded Model Checking [Biere 1999]
- Software Package Dependency Analysis (SATURN)
- Rewriting Systems (AProVE, Jambox)
- Answer Set Programming (clasp, Cmodels-2)
- FOL Theorem Prover (iProver, Darwin, Paradox)
- First Order Model Finder (Paradox)
- Constraint Satisfaction Problems (Sugar) (Tamura+ 2006)

Summarv

SAT instances are given in the conjunctive normal form (CNF).

Applications

Sugar

CNF Formula

- A CNF formula is a conjunction of clauses.
- A clause is a disjunction of literals.
- A literal is either a Boolean variable or its negation.

DIMACS CNF is used as the standard format for CNF files.

p cnf 3 4	; Number of variables and clauses
1230	; $p_1 \lor p_2 \lor p_3$
-1 -2 0	; $\neg p_1 \lor \neg p_2$
-1 -3 0	; $\neg p_1 \lor \neg p_3$
-2 -3 0	; $\neg p_2 \lor \neg p_3$

- SAT solver is a program to decide whether a given SAT instance is satisfiable (SAT) or unsatisfiable (UNSAT).
- Usually, it also returns a truth assignment as a solution when the instance is SAT.
- Systematic (complete) SAT solver answers SAT or UNSAT.
 - Most of them are based on the DPLL algorithm.
- Stochastic (incomplete) SAT solver only answers SAT (no answers for UNSAT).
 - Local search algorithms are used.

Modern SAT Solvers

• The following techniques have been introduced to DPLL and they drastically improved the performance of modern SAT solvers.

Sugar

- CDCL (Conflict Driven Clause Learning) [Silva 1996]
- Non-chronological Backtracking [Silva 1996]

Applications

- Random Restarts [Gomes 1998]
- Watched Literals [Moskewicz & Zhang 2001]
- Variable Selection Heuristics [Moskewicz & Zhang 2001]
- Chaff and zChaff solvers made one to two orders magnitude improvement (2001).
- SAT competitions and SAT races since 2002 contribute to the progress of SAT solver implementation techniques.
- MiniSat solver showed its good performance in the 2005 SAT competition with about 2000 lines of code in C++.
- Modern SAT solvers can handle instances with more than 10⁶ variables and 10⁷ clauses.

Summarv

SAT Applications Sugar Summary

Size of SAT Instances

Applications

Sugar

Summary

Performance Progress of SAT Solvers

Famous SAT Solvers

- MiniSat [Eén and Sörensson 2003]
 - http://minisat.se
- Clasp [Gebser+ 2007]
 - http://www.cs.uni-potsdam.de/clasp/
- Glucose [Audemard and Simon 2009]
 - http://www.labri.fr/perso/lsimon/glucose/

Applications

Sugar

- Lingeling [Biere 2010]
 - http://fmv.jku.at/lingeling/
- GlueMiniSat [Nabeshima+ 2011]
 - https://sites.google.com/a/nabelab.org/glueminisat/
- Sat4j [Le Berre 2010]
 - http://www.sat4j.org

SAT will be a topic of the next fascicle 6A, Volume 4 (Combinatorial Algorithms) of TAOCP (The Art Of Computer Programming) by Don Knuth. THE ART OF COMPUTER PROGRAMMING VOLUME 4 PRE-FASCICLE 6A A (VERY INCOMPLETE) DRAFT OF SECTION 7.2.2.2: SATISFIABILITY DONALD E. KNUTH Stanford University ADDISON-WESLEY

Sugar

• Current draft is already 246 pages long!

http://www-cs-faculty.stanford.edu/~knuth/fasc6a.ps.gz

Sugar

Summary

Don Knuth's TAOCP

He made an invited talk at SAT 2012 conference, and demonstrated his own SAT solvers!

- Donald E. Knuth: Satisfiability and the Art of Computer Programming, SAT 2012 invited talk, 2012.
 - $\label{eq:linear} \bullet \ http://www-cs-faculty.stanford.edu/~uno/sat2012.pdf$

Application to Combinatorial Problems

- Graph Coloring Problem
- Covering Array
- Ramsey Number
- Erdös's Discrepancy Conjecture

SAT GCP (Graph Coloring Problem)

GCP as a decision problem

Find a vertex coloring with c colors of a given graph such that no two adjacent vertices have the same color.

GCP can be formalized as a Constraint Satisfaction Problem (CSP) on integers.

$$v \in \{1, 2, \dots, c\} \quad (v \in V)$$

 $u \neq v \qquad (\{u, v\} \in E)$

Sugar

Applications

Applications

Sugar

Summary

Encoding CSP to SAT

Finite domain (arithmetic) CSP

- Variables
 - Integer variables with finite domains
 - $\ell(x)$: the lower bound of x
 - u(x) : the upper bound of x
 - Boolean variables
- Constraints
 - Arithmetic operators: +, -, \times , etc.
 - Comparison operators: =, \neq , \geq , >, \leq , <
 - Logical operators: \neg , \land , \lor , \Rightarrow
- How to encode CSP variables to SAT?
- How to encode CSP constraints to SAT?

	SAT	Applications	Sugar	Summary
AT e	ncodings			

There have been several methods proposed to encode CSP.

- Direct encoding is the most widely used one [de Kleer 1989].
- **Order encoding** shows a good performance for a wide variety of problems [Tamura+ 2006].
 - It is first used to encode job-shop scheduling problems by [Crawford & Baker 1994].
 - It succeeded to solve previously undecided problems in open-shop scheduling, job-shop scheduling, two-dimensional strip packing, etc.
- Other encodings:
 - Multivalued encoding [Selman+ 1992]
 - Support encoding [Kasif 1990]
 - Log encoding [lwama+ 1994]
 - Log-support encoding [Gavanelli 2007]
 - Compact order encoding [Tanjo+ 2010]

SAT Applications Sugar Summary
Direct encoding

In direct encoding [de Kleer 1989], a Boolean variable p(x = i) is defined as true iff the integer variable x has the domain value *i*, that is, x = i.

Boolean variables for each integer variable x

$$p(x=i)$$
 $(\ell(x) \le i \le u(x))$

For example, the following five Boolean variables are used to encode an integer variable $x \in \{2, 3, 4, 5, 6\}$,

5 Boolean variables for $x \in \{2, 3, 4, 5, 6\}$

$$p(x = 2)$$
 $p(x = 3)$ $p(x = 4)$ $p(x = 5)$ $p(x = 6)$

Direct encoding (cont.)

SAT

At-least-one and at-most-one clauses are required to make p(x = i) be true iff x = i.

Applications

Sugar

Clauses for each integer variable x

$$p(x = \ell(x)) \lor \cdots \lor p(x = u(x))$$

$$\neg p(x = i) \lor \neg p(x = j) \qquad (\ell(x) \le i < j \le u(x))$$

For example, 11 clauses are required for $x \in \{2, 3, 4, 5, 6\}$.

11 clauses for $x \in \{2, 3, 4, 5, 6\}$

$$\begin{array}{c} p(x=2) \lor p(x=3) \lor p(x=4) \lor p(x=5) \lor p(x=6) \\ \neg p(x=2) \lor \neg p(x=3) & \neg p(x=2) \lor \neg p(x=4) & \neg p(x=2) \lor \neg p(x=5) \\ \neg p(x=2) \lor \neg p(x=6) & \neg p(x=3) \lor \neg p(x=4) & \neg p(x=3) \lor \neg p(x=5) \\ \neg p(x=4) \lor \neg p(x=6) & \neg p(x=5) \lor \neg p(x=6) \end{array}$$

A constraint is encoded by enumerating its conflict points.

Constraint clauses

When $x_1 = i_1, \ldots, x_k = i_k$ violates the constraint, the following clause is added.

Sugar

$$\neg p(x_1 = i_1) \lor \cdots \lor \neg p(x_k = i_k)$$

Direct encoding (cont.)

SAT

A constraint $x + y \le 7$ is encoded into the following 15 clauses by enumerating conflict points (crossed points).

Sugar

Applications

Direct encoding of $x + y \le 7$ when $x, y \in \{2..6\}$

Sugar

Summary

Order encoding

SAT

In order encoding [Tamura+ 2006], a Boolean variable $p(x \le i)$ is defined as true iff the integer variable x is less than or equal to the domain value *i*, that is, $x \le i$.

Boolean variables for each integer variable x

 $p(x \leq i)$ $(\ell(x) \leq i < u(x))$

For example, the following four Boolean variables are used to encode an integer variable $x \in \{2, 3, 4, 5, 6\}$,

4 Boolean variables for $x \in \{2, 3, 4, 5, 6\}$

 $p(x \le 2)$ $p(x \le 3)$ $p(x \le 4)$ $p(x \le 5)$

Boolean variable p(x ≤ 6) is unnecessary since x ≤ 6 is always true.

SAT Applications Sugar Order encoding (cont.)

The following clauses are required to make $p(x \le i)$ be true iff $x \le i$.

Clauses for each integer variable x

$$eg p(x \leq i-1) \lor p(x \leq i) \quad (\ell(x) < i < u(x))$$

For example, 3 clauses are required for $x \in \{2, 3, 4, 5, 6\}$.

3 clauses for $x \in \{2, 3, 4, 5, 6\}$

$$\begin{array}{l} \neg p(x \leq 2) \lor p(x \leq 3) \\ \neg p(x \leq 3) \lor p(x \leq 4) \\ \neg p(x \leq 4) \lor p(x \leq 5) \end{array}$$

The following table shows possible satisfiable assignments for the given clauses.

$$egin{aligned} & \neg p(x \leq 2) \lor p(x \leq 3) \\ & \neg p(x \leq 3) \lor p(x \leq 4) \\ & \neg p(x \leq 4) \lor p(x \leq 5) \end{aligned}$$

Satisifiable assignments

$p(x \leq 2)$	$p(x \leq 3)$	$p(x \leq 4)$	$p(x \leq 5)$	Interpretation
1	1	1	1	x = 2
0	1	1	1	<i>x</i> = 3
0	0	1	1	<i>x</i> = 4
0	0	0	1	<i>x</i> = 5
0	0	0	0	<i>x</i> = 6

Sugar

Summary

Order encoding (cont.)

SAT

Satisfiable partial assignments

$p(x \leq 2)$	$p(x \leq 3)$	$p(x \leq 4)$	$p(x \leq 5)$	Interpretation
_	_	_	_	x = 26
_	_	_	1	<i>x</i> = 25
_	_	1	1	<i>x</i> = 24
_	1	1	1	<i>x</i> = 23
0	_	_	_	x = 36
0	0	_	_	x = 46
0	0	0	_	x = 56
0	_	_	1	<i>x</i> = 35
0	_	1	1	<i>x</i> = 3 4
0	0	—	1	<i>x</i> = 4 5
		" means un	defined.	

Partial assignments on Boolean variables represent bounds of integer variables.

A constraint is encoded by enumerating its conflict regions instead of conflict points.

Sugar

Constraint clauses

• When all points (x_1, \ldots, x_k) in the region $i_1 < x_1 \le j_1, \ldots, i_k < x_k \le j_k$ violate the constraint, the following clause is added.

$$p(x_1 \leq i_1) \lor \neg p(x_1 \leq j_1) \lor \cdots \lor p(x_k \leq i_k) \lor \neg p(x_k \leq j_k)$$

Summarv

Order encoding (cont.)

SAT

Linear inequality $\sum_{i=1}^{n} a_i x_i \leq c$ can be recursively encoded with the following relation.

Applications

Sugar

$$\begin{split} \sum_{i=1}^n a_i x_i &\leq c \iff \\ & \begin{cases} (x_1 \leq \lfloor c/a_1 \rfloor) & (n=1,a_1>0) \\ \neg (x_1 \leq \lceil c/a_1 \rceil+1) & (n=1,a_1<0) \end{cases} \\ & \bigwedge \left((x_1 \leq d-1) \lor \sum_{i=2}^n a_i x_i \leq c-a_1 d \right) & (n \geq 2, a_1>0) \\ & \bigwedge \left(\neg (x_1 \leq d) \lor \sum_{i=2}^n a_i x_i \leq c-a_1 d \right) & (n \geq 2, a_1<0) \end{cases} \end{split}$$

Sugar

Summary

Order encoding (cont.)

Order encoding of $x + y \le 7$ when $x, y \in \{2..6\}$

Sugar

Summary

Order encoding (cont.)

Order encoding of $x + y \le 7$ when $x, y \in \{2..6\}$

Sugar

Summary

Order encoding (cont.)

Order encoding of $x + y \le 7$ when $x, y \in \{2..6\}$

Sugar

Summary

Order encoding (cont.)

Sugar

Summary

Order encoding (cont.)

Sugar

Summary

Order encoding (cont.)

Sugar

Summary

Order encoding (cont.)

Sugar

Summary

Order encoding (cont.)

Order encoding (cont.)

SAT

Order encoding of $x + y \le 7$ when $x, y \in \{2..6\}$

Applications

Sugar

$$\begin{array}{ll} C_1: & p(y \leq 5) \\ C_2: & p(x \leq 2) \lor p(y \leq 4) \\ C_3: & p(x \leq 3) \lor p(y \leq 3) \\ C_4: & p(x \leq 4) \lor p(y \leq 2) \\ C_5: & p(x \leq 5) \end{array}$$

- Suppose p(x ≤ 3) becomes false (i.e. x ≥ 4), then p(y ≤ 3) becomes true (i.e. y ≤ 3) by unit propagation on C₃.
- This corresponds to the bound propagation in CSP solvers.
- It is shown that the order encoding is the only one translating some tractable CSP to tractable SAT [Petke+ 2011].

 SAT
 Applications
 Sugar

 Queens
 Graph Coloring

The graph is given by a $N \times N$ chess board where any two cells in the same row, column, or diagonal are considered to be adjacent.

- This problem is used in Knuth's TAOCP.
- N colors are sufficient when $N \equiv \pm 1 \pmod{6}$.

		SAT	Applic	ations	Su	igar	Summar
Q	ueens	Graph	Coloring				
	N	Colors	Encoding	# Vars	#Clauses	#Mems	
	7	7 (SAT)	Direct	343	4417	416,570	
	7	7 (SAT)	Order	294	3589	1 339 689	

8 (UNSAT)

8 (UNSAT)

Direct

Order

8

8

• Memory access count is measured by Knuth's "sat13" solver.

512

448

7688

6222

9,534,216,524

8,784,182,550

			SAT	Applic	ations	S	ugar	Summary
Q	uee	ens	Graph C	Coloring				
								_
		N	Colors	Encoding	#Vars	#Clauses	#Mems	
		7	7 (SAT)	Direct	343	4417	416,570	
		7	7 (SAT)	Order	294	3589	1,339,689	
		8	8 (UNSAT)	Direct	512	7688	9,534,216,524	
		8	8 (UNSAT)	Order	448	6222	8,784,182,550	

• Memory access count is measured by Knuth's "sat13" solver. For each k-clique $\{v_1, v_2, \ldots, v_k\}$ $(1 \le v_i \le c)$, we can add extra two clauses to accelerate the solving speed:

$$\bigvee_i v_i \ge k$$
 $\bigvee_i v_i \le c+1-k$

			SAT	Applic	ations	S	ugar	Summary
Q	uee	ens	Graph C	oloring				
		N	Colors	Encoding	# Vars	#Clauses	#Mems	
		7	7 (SAT)	Direct	343	4417	416,570	
		7	7 (SAT)	Order	294	3589	1,339,689	
		8	8 (UNSAT)	Direct	512	7688	9,534,216,524	
		8	8 (UNSAT)	Order	448	6222	8,784,182,550	

• Memory access count is measured by Knuth's "sat13" solver. For each k-clique $\{v_1, v_2, \ldots, v_k\}$ $(1 \le v_i \le c)$, we can add extra two clauses to accelerate the solving speed:

$$\bigvee_i v_i \geq k \qquad \qquad \bigvee_i v_i \leq c+1-k$$

Ν	Colors	Encoding	# Vars	#Clauses	#Mems
7	7 (SAT)	Order+	294	3661	243,678
8	8 (UNSAT)	Order+	448	6306	30,470,236

Applications

Sugar

Covering Array

CAN(t, k, g)	
New results	Previously known results
$20 \le CAN(2,7,4) \le 21$	$19 \leq CAN(2,7,4) \leq 21$
$80 \leq \mathit{CAN}(3,8,4) \leq 88$	$76 \leq CAN(3,8,4) \leq 88$
CAN(3, 12, 2) = 15	$14 \leq \textit{CAN}(3,12,2) \leq 15$
$15 \leq CAN(3,k,2) \; (k \geq 13)$	$14 \leq CAN(3,k,2) \ (k \geq 13)$
$50 \leq CAN(5,9,2) \leq 54$	$48 \leq CAN(5,9,2) \leq 54$
<i>CAN</i> (6, 8, 2) = 85	$84 \leq \textit{CAN}(6,8,2) \leq 85$

- Combination of the order encoding and Hnich's encoding is used.
- Lower-bounds are updated for six instances and the optimum size are decided for two instances [Banbara+, LPAR 2010].

SATApplicationsSugarSummaryRamsey NumberNumberRamsey number R(s, t) is the minimum number n such that any
blue-red edge coloring of K_n contains either blue K_s or red K_t .SAT Encoding for a graph of n vertices $V = \{1, 2, ..., n\}$

• Boolean variables: e_{ij} (for $1 \le i < j \le n$)

Clauses:

$$igvee_{i,j\in U,\ i< j}
egree e_{ij} \quad (ext{for } U\subset V,\ |U|=s) \ \bigvee_{i,j\in U,\ i< j} e_{ij} \quad (ext{for } U\subset V,\ |U|=t)$$

Fujita showed $R(4,8) \ge 58$ with his own SAT solver named SCSat [Fujita+, SAT 2013].

Paul Erdös conjectured that for any positive integer C in any infinite ± 1 sequence (x_n) , there exists a subsequence x_d , x_{2d} , x_{3d} , ..., x_{kd} for some positive integers k and d, such that $\left|\sum_{i=1}^{k} x_{id}\right| > C$.

Applications

Sugar

Kovev and Lisista showed in their SAT 2014 paper:

- a sequence of length 1160 satisfying $\left|\sum_{i=1}^{k} x_{id}\right| \le 2$ for any k and d, and
- a proof of discrepancy conjecture for C = 2, claiming that no discrepancy 2 sequence of length 1161 (or more) exists.

They used SAT solvers to find a sequence of 1160, and also a proof (13G bytes) for length 1161.

Summarv

SAT Applications Sugar Summary

Sugar: a SAT-based Constraint Solver

Applications

Sugar

Summary

Sugar: a SAT-based Constraint Solver

- **Sugar** is a SAT-based constraint solver using the **order encoding**.
- It won in global constraint categories of 2008 and 2009 international CSP solver competitions.

Applications

Sugar

Summary

Example of Sugar CSP

(int v1 1 3) (int v2 1 3) (int v3 1 3) (int v4 1 3) (!= v1 v2) (!= v1 v3) (!= v1 v4) (!= v2 v4) (!= v3 v4)

Applications

Sugar

CSC 2009 (Global Categories)

Series		Sugar+m	Sugar+p	Mistral	Choco	bpsolver
BIBD	(83)	76	77	76	58	35
Costas Array	(11)	8	8	9	9	9
Latin Square	(10)	10	9	5	5	5
Magic Square	(18)	8	8	13	15	11
NengFa	(3)	3	3	3	3	3
Orthogonal Latin Square	(9)	3	3	3	2	3
Perfect Square Packing	(74)	54	53	40	47	36
Pigeons	(19)	19	19	19	19	19
Quasigroup Existence	(35)	30	29	29	28	30
Pseudo-Boolean	(100)	68	75	59	53	70
BQWH	(20)	20	20	20	20	20
Cumulative Job-Shop	(10)	4	4	2	1	0
RCPSP	(78)	78	78	78	77	75
Cabinet	(40)	40	40	40	40	40
Timetabling	(46)	25	42	39	14	1
Total	(556)	446	468	435	391	357

• The number of solved instances in global categories

- Sugar+m : Sugar with MiniSat 2.0 backend
- Sugar+p : Sugar with PicoSAT 535 backend

Applications

Sugar

Summary

CSC 2009 (Global Categories)

SAT Applications Sugar Summary

Summary

1 SAT Problems and SAT Solvers

- SAT Problems
- SAT Solvers
- Don Knuth's TAOCP
- **2** Applications to Combinatorial Problems
 - Graph Coloring Problem
 - Covering Array
 - Ramsey Number
 - Erdös's Discrepancy Conjecture
- 3 Sugar: a SAT-based Constraint Solver

SAT	Applications	Sugar	Summary

- Handbook of Satisfiability, IOS Press, 2009.
 - 特集「最近の SAT 技術の発展」,人工知能学会誌,第 25 巻 1 号,2010.
 - SAT ソルバーの基礎,高速 SAT ソルバーの原理,制約最適化問題と SAT 符号化,SMT:個別理論を取り扱う SAT 技術,モデル列挙と モデル計数,*-SAT:SAT の拡張,SAT によるプランニングとスケ ジューリング,SAT によるシステム検証
 - 「私のブックマーク: SAT ソルバー」,人工知能学会誌,第85 巻2号,2013.

• http://www.ai-gakkai.or.jp/my-bookmark_vol28-no2/

• SAT/SMT Summer School 2014

http://satsmt2014.forsyte.at

Sugar

References

http://bach.istc.kobe-u.ac.jp/sugar/