
SAT Applications Sugar Summary

SAT Solver and its Application to
Combinatorial Problems

Naoyuki Tamura

Kobe University

実験計画法およびその周辺の組合せ構造 2014
December 14th, 2014

1 / 46

SAT Applications Sugar Summary

Contents

1 SAT Problems and SAT Solvers

SAT Problems
SAT Solvers
Don Knuth’s TAOCP

2 Applications to Combinatorial Problems

Graph Coloring Problem
Covering Array
Ramsey Number
Erdös’s Discrepancy Conjecture

3 Sugar: a SAT-based Constraint Solver

4 Summary

http://bach.istc.kobe-u.ac.jp/papers/pdf/kinosaki2014.pdf

2 / 46

http://bach.istc.kobe-u.ac.jp/papers/pdf/kinosaki2014.pdf

SAT Applications Sugar Summary

SAT Problems and SAT Solvers

3 / 46

SAT Applications Sugar Summary

SAT Problems

SAT (Boolean satisfiability testing) is a problem to decide whether
a given Boolean formula has any satisfying truth assignment.

SAT is a central problem in Computer Science both
theoretically and practically.

SAT is the first NP-complete problem [Cook 1971].

SAT has very efficient implementation (MiniSat, etc.).

SAT-based approach is becoming popular in many areas.

Intel core I7 processor design [Kaivola+, CAV 2009]
Windows 7 device drivers verification with Z3 [De Moura and
Bjorner, IJCAR 2010]
Software component dependency analysis in Eclipse [Le Berre
and Rapicault, IWOCE 2009]

4 / 46

SAT Applications Sugar Summary

SAT-based Systems

Planning (SATPLAN, Blackbox) [Kautz & Selman 1992]

Automatic Test Pattern Generation [Larrabee 1992]

Job-shop Scheduling [Crawford & Baker 1994]

Software Specification (Alloy) (1998)

Bounded Model Checking [Biere 1999]

Software Package Dependency Analysis (SATURN)

Rewriting Systems (AProVE, Jambox)

Answer Set Programming (clasp, Cmodels-2)

FOL Theorem Prover (iProver, Darwin, Paradox)

First Order Model Finder (Paradox)

Constraint Satisfaction Problems (Sugar) (Tamura+ 2006)

5 / 46

SAT Applications Sugar Summary

SAT Instances

SAT instances are given in the conjunctive normal form (CNF).

CNF Formula

A CNF formula is a conjunction of clauses.

A clause is a disjunction of literals.

A literal is either a Boolean variable or its negation.

DIMACS CNF is used as the standard format for CNF files.

p cnf 3 4 ; Number of variables and clauses
1 2 3 0 ; p1 ∨ p2 ∨ p3
-1 -2 0 ; ¬p1 ∨ ¬p2
-1 -3 0 ; ¬p1 ∨ ¬p3
-2 -3 0 ; ¬p2 ∨ ¬p3

6 / 46

SAT Applications Sugar Summary

SAT Solvers

SAT solver is a program to decide whether a given SAT
instance is satisfiable (SAT) or unsatisfiable (UNSAT).

Usually, it also returns a truth assignment as a solution when
the instance is SAT.

Systematic (complete) SAT solver answers SAT or UNSAT.

Most of them are based on the DPLL algorithm.

Stochastic (incomplete) SAT solver only answers SAT (no
answers for UNSAT).

Local search algorithms are used.

7 / 46

SAT Applications Sugar Summary

Modern SAT Solvers

The following techniques have been introduced to DPLL and
they drastically improved the performance of modern SAT
solvers.

CDCL (Conflict Driven Clause Learning) [Silva 1996]
Non-chronological Backtracking [Silva 1996]
Random Restarts [Gomes 1998]
Watched Literals [Moskewicz & Zhang 2001]
Variable Selection Heuristics [Moskewicz & Zhang 2001]

Chaff and zChaff solvers made one to two orders magnitude
improvement (2001).

SAT competitions and SAT races since 2002 contribute to the
progress of SAT solver implementation techniques.

MiniSat solver showed its good performance in the 2005 SAT
competition with about 2000 lines of code in C++.

Modern SAT solvers can handle instances with more than 106

variables and 107 clauses.

8 / 46

SAT Applications Sugar Summary

Size of SAT Instances

2011 SAT competition, Applications Track

9 / 46

SAT Applications Sugar Summary

Performance Progress of SAT Solvers

10 / 46

SAT Applications Sugar Summary

Famous SAT Solvers

MiniSat [Eén and Sörensson 2003]

http://minisat.se

Clasp [Gebser+ 2007]

http://www.cs.uni-potsdam.de/clasp/

Glucose [Audemard and Simon 2009]

http://www.labri.fr/perso/lsimon/glucose/

Lingeling [Biere 2010]

http://fmv.jku.at/lingeling/

GlueMiniSat [Nabeshima+ 2011]

https://sites.google.com/a/nabelab.org/glueminisat/

Sat4j [Le Berre 2010]

http://www.sat4j.org

11 / 46

http://minisat.se
http://www.cs.uni-potsdam.de/clasp/
http://www.labri.fr/perso/lsimon/glucose/
http://fmv.jku.at/lingeling/
https://sites.google.com/a/nabelab.org/glueminisat/
http://www.sat4j.org

SAT Applications Sugar Summary

Don Knuth’s TAOCP

SAT will be a topic of the next fascicle 6A,
Volume 4 (Combinatorial Algorithms) of
TAOCP (The Art Of Computer Programming)
by Don Knuth.

Current draft is already 246 pages long!

http://www-cs-faculty.stanford.edu/~knuth/fasc6a.ps.gz

12 / 46

http://www-cs-faculty.stanford.edu/~knuth/fasc6a.ps.gz

SAT Applications Sugar Summary

Don Knuth’s TAOCP

He made an invited talk at SAT 2012 conference, and
demonstrated his own SAT solvers!

Donald E. Knuth: Satisfiability and the Art of Computer
Programming, SAT 2012 invited talk, 2012.

http://www-cs-faculty.stanford.edu/~uno/sat2012.pdf

13 / 46

http://www-cs-faculty.stanford.edu/~uno/sat2012.pdf

SAT Applications Sugar Summary

Application to Combinatorial Problems

Graph Coloring Problem

Covering Array

Ramsey Number

Erdös’s Discrepancy Conjecture

14 / 46

SAT Applications Sugar Summary

GCP (Graph Coloring Problem)

GCP as a decision problem

Find a vertex coloring with c colors of a given graph such that no
two adjacent vertices have the same color.

���� ����

���� ����
v1 v2

v3 v4

@
@
@@

GCP can be formalized as a Constraint Satisfaction Problem
(CSP) on integers.

v ∈ {1, 2, . . . , c} (v ∈ V)

u ̸= v ({u, v} ∈ E)

15 / 46

SAT Applications Sugar Summary

Encoding CSP to SAT

Finite domain (arithmetic) CSP

Variables
Integer variables with finite domains

ℓ(x) : the lower bound of x
u(x) : the upper bound of x

Boolean variables

Constraints

Arithmetic operators: +, −, ×, etc.
Comparison operators: =, ̸=, ≥, >, ≤, <
Logical operators: ¬, ∧, ∨, ⇒

How to encode CSP variables to SAT?

How to encode CSP constraints to SAT?

16 / 46

SAT Applications Sugar Summary

SAT encodings

There have been several methods proposed to encode CSP.

Direct encoding is the most widely used one [de Kleer 1989].

Order encoding shows a good performance for a wide variety
of problems [Tamura+ 2006].

It is first used to encode job-shop scheduling problems by
[Crawford & Baker 1994].
It succeeded to solve previously undecided problems in
open-shop scheduling, job-shop scheduling, two-dimensional
strip packing, etc.

Other encodings:

Multivalued encoding [Selman+ 1992]
Support encoding [Kasif 1990]
Log encoding [Iwama+ 1994]
Log-support encoding [Gavanelli 2007]
Compact order encoding [Tanjo+ 2010]

17 / 46

SAT Applications Sugar Summary

Direct encoding

In direct encoding [de Kleer 1989], a Boolean variable p(x = i) is
defined as true iff the integer variable x has the domain value i ,
that is, x = i .

Boolean variables for each integer variable x

p(x = i) (ℓ(x) ≤ i ≤ u(x))

For example, the following five Boolean variables are used to
encode an integer variable x ∈ {2, 3, 4, 5, 6},

5 Boolean variables for x ∈ {2, 3, 4, 5, 6}

p(x = 2) p(x = 3) p(x = 4) p(x = 5) p(x = 6)

18 / 46

SAT Applications Sugar Summary

Direct encoding (cont.)

At-least-one and at-most-one clauses are required to make
p(x = i) be true iff x = i .

Clauses for each integer variable x

p(x = ℓ(x)) ∨ · · · ∨ p(x = u(x))

¬p(x = i) ∨ ¬p(x = j) (ℓ(x) ≤ i < j ≤ u(x))

For example, 11 clauses are required for x ∈ {2, 3, 4, 5, 6}.

11 clauses for x ∈ {2, 3, 4, 5, 6}
p(x = 2) ∨ p(x = 3) ∨ p(x = 4) ∨ p(x = 5) ∨ p(x = 6)

¬p(x = 2) ∨ ¬p(x = 3) ¬p(x = 2) ∨ ¬p(x = 4) ¬p(x = 2) ∨ ¬p(x = 5)
¬p(x = 2) ∨ ¬p(x = 6) ¬p(x = 3) ∨ ¬p(x = 4) ¬p(x = 3) ∨ ¬p(x = 5)

¬p(x = 3) ∨ ¬p(x = 6) ¬p(x = 4) ∨ ¬p(x = 5)
¬p(x = 4) ∨ ¬p(x = 6) ¬p(x = 5) ∨ ¬p(x = 6)

19 / 46

SAT Applications Sugar Summary

Direct encoding (cont.)

A constraint is encoded by enumerating its conflict points.

Constraint clauses

When x1 = i1, . . . , xk = ik violates the constraint, the following
clause is added.

¬p(x1 = i1) ∨ · · · ∨ ¬p(xk = ik)

20 / 46

SAT Applications Sugar Summary

Direct encoding (cont.)

A constraint x + y ≤ 7 is encoded into the following 15 clauses by
enumerating conflict points (crossed points).

Direct encoding of x + y ≤ 7 when x , y ∈ {2..6}
¬p(x = 2) ∨ ¬p(y = 6)
¬p(x = 3) ∨ ¬p(y = 5)
¬p(x = 3) ∨ ¬p(y = 6)
¬p(x = 4) ∨ ¬p(y = 4)
¬p(x = 4) ∨ ¬p(y = 5)
¬p(x = 4) ∨ ¬p(y = 6)
¬p(x = 5) ∨ ¬p(y = 3)
¬p(x = 5) ∨ ¬p(y = 4)
¬p(x = 5) ∨ ¬p(y = 5)
¬p(x = 5) ∨ ¬p(y = 6)
¬p(x = 6) ∨ ¬p(y = 2)
¬p(x = 6) ∨ ¬p(y = 3)
¬p(x = 6) ∨ ¬p(y = 4)
¬p(x = 6) ∨ ¬p(y = 5)
¬p(x = 6) ∨ ¬p(y = 6)

0 1 2 3 4 5 6 7

1

2

3

4

5

6

7

x

y

21 / 46

SAT Applications Sugar Summary

Order encoding

In order encoding [Tamura+ 2006], a Boolean variable p(x ≤ i) is
defined as true iff the integer variable x is less than or equal to the
domain value i , that is, x ≤ i .

Boolean variables for each integer variable x

p(x ≤ i) (ℓ(x) ≤ i < u(x))

For example, the following four Boolean variables are used to
encode an integer variable x ∈ {2, 3, 4, 5, 6},

4 Boolean variables for x ∈ {2, 3, 4, 5, 6}

p(x ≤ 2) p(x ≤ 3) p(x ≤ 4) p(x ≤ 5)

Boolean variable p(x ≤ 6) is unnecessary since x ≤ 6 is always
true.

22 / 46

SAT Applications Sugar Summary

Order encoding (cont.)

The following clauses are required to make p(x ≤ i) be true iff
x ≤ i .

Clauses for each integer variable x

¬p(x ≤ i − 1) ∨ p(x ≤ i) (ℓ(x) < i < u(x))

For example, 3 clauses are required for x ∈ {2, 3, 4, 5, 6}.

3 clauses for x ∈ {2, 3, 4, 5, 6}

¬p(x ≤ 2) ∨ p(x ≤ 3)
¬p(x ≤ 3) ∨ p(x ≤ 4)
¬p(x ≤ 4) ∨ p(x ≤ 5)

23 / 46

SAT Applications Sugar Summary

Order encoding (cont.)

The following table shows possible satisfiable assignments for the
given clauses.

¬p(x ≤ 2) ∨ p(x ≤ 3)
¬p(x ≤ 3) ∨ p(x ≤ 4)
¬p(x ≤ 4) ∨ p(x ≤ 5)

Satisifiable assignments

p(x ≤ 2) p(x ≤ 3) p(x ≤ 4) p(x ≤ 5) Interpretation

1 1 1 1 x = 2
0 1 1 1 x = 3
0 0 1 1 x = 4
0 0 0 1 x = 5
0 0 0 0 x = 6

24 / 46

SAT Applications Sugar Summary

Order encoding (cont.)

Satisfiable partial assignments

p(x ≤ 2) p(x ≤ 3) p(x ≤ 4) p(x ≤ 5) Interpretation
− − − − x = 2 .. 6
− − − 1 x = 2 .. 5
− − 1 1 x = 2 .. 4
− 1 1 1 x = 2 .. 3
0 − − − x = 3 .. 6
0 0 − − x = 4 .. 6
0 0 0 − x = 5 .. 6
0 − − 1 x = 3 .. 5
0 − 1 1 x = 3 .. 4
0 0 − 1 x = 4 .. 5

“−” means undefined.

Partial assignments on Boolean variables represent bounds of
integer variables.

25 / 46

SAT Applications Sugar Summary

Order encoding (cont.)

A constraint is encoded by enumerating its conflict regions instead
of conflict points.

Constraint clauses

When all points (x1, . . . , xk) in the region i1 < x1 ≤ j1, . . . ,
ik < xk ≤ jk violate the constraint, the following clause is
added.

p(x1 ≤ i1) ∨ ¬p(x1 ≤ j1) ∨ · · · ∨ p(xk ≤ ik) ∨ ¬p(xk ≤ jk)

26 / 46

SAT Applications Sugar Summary

Order encoding (cont.)

Linear inequality
∑n

i=1 aixi ≤ c can be recursively encoded with
the following relation.

n∑
i=1

aixi ≤ c ⇐⇒

(x1 ≤ ⌊c/a1⌋) (n = 1, a1 > 0)

¬(x1 ≤ ⌈c/a1⌉+ 1) (n = 1, a1 < 0)∧
d∈Dom(x1)

(
(x1 ≤ d − 1) ∨

n∑
i=2

aixi ≤ c − a1d
)

(n ≥ 2, a1 > 0)

∧
d∈Dom(x1)

(
¬(x1 ≤ d) ∨

n∑
i=2

aixi ≤ c − a1d
)

(n ≥ 2, a1 < 0)

27 / 46

SAT Applications Sugar Summary

Order encoding (cont.)

Order encoding of x + y ≤ 7 when x , y ∈ {2..6}

0 1 2 3 4 5 6 7

1

2

3

4

5

6

7

x

y

28 / 46

SAT Applications Sugar Summary

Order encoding (cont.)

Order encoding of x + y ≤ 7 when x , y ∈ {2..6}

¬(y ≥ 6)

0 1 2 3 4 5 6 7

1

2

3

4

5

6

7

x

y

29 / 46

SAT Applications Sugar Summary

Order encoding (cont.)

Order encoding of x + y ≤ 7 when x , y ∈ {2..6}

p(y ≤ 5)

0 1 2 3 4 5 6 7

1

2

3

4

5

6

7

x

y

29 / 46

SAT Applications Sugar Summary

Order encoding (cont.)

Order encoding of x + y ≤ 7 when x , y ∈ {2..6}

p(y ≤ 5)
¬(x ≥ 3 ∧ y ≥ 5)

0 1 2 3 4 5 6 7

1

2

3

4

5

6

7

x

y

30 / 46

SAT Applications Sugar Summary

Order encoding (cont.)

Order encoding of x + y ≤ 7 when x , y ∈ {2..6}

p(y ≤ 5)
p(x ≤ 2) ∨ p(y ≤ 4)

0 1 2 3 4 5 6 7

1

2

3

4

5

6

7

x

y

30 / 46

SAT Applications Sugar Summary

Order encoding (cont.)

Order encoding of x + y ≤ 7 when x , y ∈ {2..6}

p(y ≤ 5)
p(x ≤ 2) ∨ p(y ≤ 4)
¬(x ≥ 4 ∧ y ≥ 4)

0 1 2 3 4 5 6 7

1

2

3

4

5

6

7

x

y

31 / 46

SAT Applications Sugar Summary

Order encoding (cont.)

Order encoding of x + y ≤ 7 when x , y ∈ {2..6}

p(y ≤ 5)
p(x ≤ 2) ∨ p(y ≤ 4)
p(x ≤ 3) ∨ p(y ≤ 3)

0 1 2 3 4 5 6 7

1

2

3

4

5

6

7

x

y

31 / 46

SAT Applications Sugar Summary

Order encoding (cont.)

Order encoding of x + y ≤ 7 when x , y ∈ {2..6}

p(y ≤ 5)
p(x ≤ 2) ∨ p(y ≤ 4)
p(x ≤ 3) ∨ p(y ≤ 3)
¬(x ≥ 5 ∧ y ≥ 3)

0 1 2 3 4 5 6 7

1

2

3

4

5

6

7

x

y

32 / 46

SAT Applications Sugar Summary

Order encoding (cont.)

Order encoding of x + y ≤ 7 when x , y ∈ {2..6}

p(y ≤ 5)
p(x ≤ 2) ∨ p(y ≤ 4)
p(x ≤ 3) ∨ p(y ≤ 3)
p(x ≤ 4) ∨ p(y ≤ 2)

0 1 2 3 4 5 6 7

1

2

3

4

5

6

7

x

y

32 / 46

SAT Applications Sugar Summary

Order encoding (cont.)

Order encoding of x + y ≤ 7 when x , y ∈ {2..6}

p(y ≤ 5)
p(x ≤ 2) ∨ p(y ≤ 4)
p(x ≤ 3) ∨ p(y ≤ 3)
p(x ≤ 4) ∨ p(y ≤ 2)
¬(x ≥ 6)

0 1 2 3 4 5 6 7

1

2

3

4

5

6

7

x

y

33 / 46

SAT Applications Sugar Summary

Order encoding (cont.)

Order encoding of x + y ≤ 7 when x , y ∈ {2..6}

p(y ≤ 5)
p(x ≤ 2) ∨ p(y ≤ 4)
p(x ≤ 3) ∨ p(y ≤ 3)
p(x ≤ 4) ∨ p(y ≤ 2)
p(x ≤ 5)

0 1 2 3 4 5 6 7

1

2

3

4

5

6

7

x

y

33 / 46

SAT Applications Sugar Summary

Order encoding (cont.)

Order encoding of x + y ≤ 7 when x , y ∈ {2..6}

C1 : p(y ≤ 5)
C2 : p(x ≤ 2) ∨ p(y ≤ 4)
C3 : p(x ≤ 3) ∨ p(y ≤ 3)
C4 : p(x ≤ 4) ∨ p(y ≤ 2)
C5 : p(x ≤ 5)

Suppose p(x ≤ 3) becomes false (i.e. x ≥ 4), then p(y ≤ 3)
becomes true (i.e. y ≤ 3) by unit propagation on C3.

This corresponds to the bound propagation in CSP solvers.

It is shown that the order encoding is the only one translating
some tractable CSP to tractable SAT [Petke+ 2011].

34 / 46

SAT Applications Sugar Summary

Queens Graph Coloring

The graph is given by a N × N chess board where any two cells in
the same row, column, or diagonal are considered to be adjacent.

This problem is used in Knuth’s TAOCP.

N colors are sufficient when N ≡ ±1 (mod 6).

35 / 46

SAT Applications Sugar Summary

Queens Graph Coloring

N Colors Encoding #Vars #Clauses #Mems

7 7 (SAT) Direct 343 4417 416,570
7 7 (SAT) Order 294 3589 1,339,689
8 8 (UNSAT) Direct 512 7688 9,534,216,524
8 8 (UNSAT) Order 448 6222 8,784,182,550

Memory access count is measured by Knuth’s “sat13” solver.

For each k-clique {v1, v2, . . . , vk} (1 ≤ vi ≤ c), we can add extra
two clauses to accelerate the solving speed:∨

i

vi ≥ k
∨
i

vi ≤ c + 1− k

N Colors Encoding #Vars #Clauses #Mems

7 7 (SAT) Order+ 294 3661 243,678
8 8 (UNSAT) Order+ 448 6306 30,470,236

36 / 46

SAT Applications Sugar Summary

Queens Graph Coloring

N Colors Encoding #Vars #Clauses #Mems

7 7 (SAT) Direct 343 4417 416,570
7 7 (SAT) Order 294 3589 1,339,689
8 8 (UNSAT) Direct 512 7688 9,534,216,524
8 8 (UNSAT) Order 448 6222 8,784,182,550

Memory access count is measured by Knuth’s “sat13” solver.

For each k-clique {v1, v2, . . . , vk} (1 ≤ vi ≤ c), we can add extra
two clauses to accelerate the solving speed:∨

i

vi ≥ k
∨
i

vi ≤ c + 1− k

N Colors Encoding #Vars #Clauses #Mems

7 7 (SAT) Order+ 294 3661 243,678
8 8 (UNSAT) Order+ 448 6306 30,470,236

36 / 46

SAT Applications Sugar Summary

Queens Graph Coloring

N Colors Encoding #Vars #Clauses #Mems

7 7 (SAT) Direct 343 4417 416,570
7 7 (SAT) Order 294 3589 1,339,689
8 8 (UNSAT) Direct 512 7688 9,534,216,524
8 8 (UNSAT) Order 448 6222 8,784,182,550

Memory access count is measured by Knuth’s “sat13” solver.

For each k-clique {v1, v2, . . . , vk} (1 ≤ vi ≤ c), we can add extra
two clauses to accelerate the solving speed:∨

i

vi ≥ k
∨
i

vi ≤ c + 1− k

N Colors Encoding #Vars #Clauses #Mems

7 7 (SAT) Order+ 294 3661 243,678
8 8 (UNSAT) Order+ 448 6306 30,470,236

36 / 46

SAT Applications Sugar Summary

Covering Array

CAN(t, k, g)

New results Previously known results

20 ≤ CAN(2, 7, 4) ≤ 21 19 ≤ CAN(2, 7, 4) ≤ 21
80 ≤ CAN(3, 8, 4) ≤ 88 76 ≤ CAN(3, 8, 4) ≤ 88
CAN(3, 12, 2) = 15 14 ≤ CAN(3, 12, 2) ≤ 15

15 ≤ CAN(3, k, 2) (k ≥ 13) 14 ≤ CAN(3, k, 2) (k ≥ 13)
50 ≤ CAN(5, 9, 2) ≤ 54 48 ≤ CAN(5, 9, 2) ≤ 54

CAN(6, 8, 2) = 85 84 ≤ CAN(6, 8, 2) ≤ 85

Combination of the order encoding and Hnich’s encoding is
used.

Lower-bounds are updated for six instances and the optimum
size are decided for two instances [Banbara+, LPAR 2010].

37 / 46

SAT Applications Sugar Summary

Ramsey Number

Ramsey number R(s, t) is the minimum number n such that any
blue-red edge coloring of Kn contains either blue Ks or red Kt .

SAT Encoding for a graph of n vertices V = {1, 2, . . . , n}
Boolean variables: eij (for 1 ≤ i < j ≤ n)

Clauses: ∨
i ,j∈U, i<j

¬eij (for U ⊂ V , |U| = s)

∨
i ,j∈U, i<j

eij (for U ⊂ V , |U| = t)

Fujita showed R(4, 8) ≥ 58 with his own SAT solver named SCSat
[Fujita+, SAT 2013].

38 / 46

SAT Applications Sugar Summary

Erdös’s Discrepancy Conjecture

Paul Erdös conjectured that for any positive integer C in any
infinite ±1 sequence (xn), there exists a subsequence xd , x2d , x3d ,
. . . , xkd for some positive integers k and d , such that∣∣∣∑k

i=1 xid

∣∣∣ > C .

Kovev and Lisista showed in their SAT 2014 paper:

a sequence of length 1160 satisfying
∣∣∣∑k

i=1 xid

∣∣∣ ≤ 2 for any k

and d , and

a proof of discrepancy conjecture for C = 2, claiming that no
discrepancy 2 sequence of length 1161 (or more) exists.

They used SAT solvers to find a sequence of 1160, and also a
proof (13G bytes) for length 1161.

39 / 46

SAT Applications Sugar Summary

Sugar: a SAT-based Constraint Solver

40 / 46

SAT Applications Sugar Summary

Sugar: a SAT-based Constraint Solver

Sugar is a SAT-based constraint solver using the order
encoding.

It won in global constraint categories of 2008 and 2009
international CSP solver competitions.

41 / 46

SAT Applications Sugar Summary

Example of Sugar CSP

���� ����

���� ����
v1 v2

v3 v4

@
@
@@

(int v1 1 3)

(int v2 1 3)

(int v3 1 3)

(int v4 1 3)

(!= v1 v2)

(!= v1 v3)

(!= v1 v4)

(!= v2 v4)

(!= v3 v4)

42 / 46

SAT Applications Sugar Summary

CSC 2009 (Global Categories)

Series Sugar+m Sugar+p Mistral Choco bpsolver
BIBD (83) 76 77 76 58 35
Costas Array (11) 8 8 9 9 9
Latin Square (10) 10 9 5 5 5
Magic Square (18) 8 8 13 15 11
NengFa (3) 3 3 3 3 3
Orthogonal Latin Square (9) 3 3 3 2 3
Perfect Square Packing (74) 54 53 40 47 36
Pigeons (19) 19 19 19 19 19
Quasigroup Existence (35) 30 29 29 28 30
Pseudo-Boolean (100) 68 75 59 53 70
BQWH (20) 20 20 20 20 20
Cumulative Job-Shop (10) 4 4 2 1 0
RCPSP (78) 78 78 78 77 75
Cabinet (40) 40 40 40 40 40
Timetabling (46) 25 42 39 14 1
Total (556) 446 468 435 391 357

The number of solved instances in global categories
Sugar+m : Sugar with MiniSat 2.0 backend
Sugar+p : Sugar with PicoSAT 535 backend

43 / 46

SAT Applications Sugar Summary

CSC 2009 (Global Categories)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 100 200 300 400 500

C
P

U
 ti

m
e

(s
ec

on
ds

)

Number of solved instances

Sugar+minisat
Sugar+picosat

Mistral
Choco 2.1.1

bpsolver

44 / 46

SAT Applications Sugar Summary

Summary

1 SAT Problems and SAT Solvers

SAT Problems
SAT Solvers
Don Knuth’s TAOCP

2 Applications to Combinatorial Problems

Graph Coloring Problem
Covering Array
Ramsey Number
Erdös’s Discrepancy Conjecture

3 Sugar: a SAT-based Constraint Solver

45 / 46

SAT Applications Sugar Summary

References

Handbook of Satisfiability, IOS Press, 2009.

特集「最近の SAT技術の発展」, 人工知能学会誌, 第 25巻 1
号, 2010.

SATソルバーの基礎，高速 SATソルバーの原理，制約最適化問題と
SAT符号化，SMT：個別理論を取り扱う SAT技術，モデル列挙と
モデル計数，＊-SAT: SATの拡張，SATによるプランニングとスケ
ジューリング，SATによるシステム検証

「私のブックマーク: SATソルバー」, 人工知能学会誌, 第 85
巻 2号, 2013.

http://www.ai-gakkai.or.jp/my-bookmark vol28-no2/

SAT/SMT Summer School 2014

http://satsmt2014.forsyte.at

Sugar

http://bach.istc.kobe-u.ac.jp/sugar/

46 / 46

http://www.ai-gakkai.or.jp/my-bookmark_vol28-no2/
http://satsmt2014.forsyte.at
http://bach.istc.kobe-u.ac.jp/sugar/

