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SAT

SAT Problems

SAT (Boolean satisfiability testing) is a problem to decide whether
a given Boolean formula has any satisfying truth assignment.

©

SAT is a central problem in Computer Science both
theoretically and practically.

SAT is the first NP-complete problem [Cook 1971].
SAT has very efficient implementation (MiniSat, etc.).

©

(]

o

SAT-based approach is becoming popular in many areas.

o Intel core |17 processor design [Kaivola+, CAV 2009]

o Windows 7 device drivers verification with Z3 [De Moura and
Bjorner, 1JCAR 2010]

o Software component dependency analysis in Eclipse [Le Berre
and Rapicault, IWOCE 2009]
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SAT

SAT-based Systems

© © 06 06 06 06 © © o o o

Planning (SATPLAN, Blackbox) [Kautz & Selman 1992]
Automatic Test Pattern Generation [Larrabee 1992]
Job-shop Scheduling [Crawford & Baker 1994]

Software Specification (Alloy) (1998)

Bounded Model Checking [Biere 1999]

Software Package Dependency Analysis (SATURN)
Rewriting Systems (AProVE, Jambox)

Answer Set Programming (clasp, Cmodels-2)

FOL Theorem Prover (iProver, Darwin, Paradox)

First Order Model Finder (Paradox)

Constraint Satisfaction Problems (Sugar) (Tamura+ 2006)
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Summary

SAT Applications

SAT Instances

SAT instances are given in the conjunctive normal form (CNF).

CNF Formula

o A CNF formula is a conjunction of clauses.
o A clause is a disjunction of literals.
o A literal is either a Boolean variable or its negation.

DIMACS CNF is used as the standard format for CNF files.

p cnf 3 4 ; Number of variables and clauses
1230 s p1V p2Vp3

-1-20 ;p1 Y p2

-1-30 ; pP1V p3

-2-30 ; P2V p3



SAT Applications Summary

SAT Solvers

o SAT solver is a program to decide whether a given SAT
instance is satisfiable (SAT) or unsatisfiable (UNSAT).

o Usually, it also returns a truth assignment as a solution when
the instance is SAT.

o Systematic (complete) SAT solver answers SAT or UNSAT.
o Most of them are based on the DPLL algorithm.

o Stochastic (incomplete) SAT solver only answers SAT (no
answers for UNSAT).

o Local search algorithms are used.
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SAT

Modern SAT Solvers

o The following techniques have been introduced to DPLL and
they drastically improved the performance of modern SAT
solvers.

CDCL (Conflict Driven Clause Learning) [Silva 1996]

Non-chronological Backtracking [Silva 1996]

Random Restarts [Gomes 1998]

Watched Literals [Moskewicz & Zhang 2001]

Variable Selection Heuristics [Moskewicz & Zhang 2001]

© 06 06 0 o

o Chaff and zChaff solvers made one to two orders magnitude
improvement (2001).

o SAT competitions and SAT races since 2002 contribute to the
progress of SAT solver implementation techniques.

o MiniSat solver showed its good performance in the 2005 SAT
competition with about 2000 lines of code in C++.

o Modern SAT solvers can handle instances with more than 108
variables and 107 clauses.

8/46



SAT

Size of SAT Instances
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CPU Time (in seconds)
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SAT

Famous SAT Solvers

o MiniSat [Eén and Sérensson 2003]

o http://minisat.se
Clasp [Gebser+ 2007]

o http://www.cs.uni-potsdam.de/clasp/
Glucose [Audemard and Simon 2009]

o http://www.labri.fr/perso/Isimon/glucose/
Lingeling [Biere 2010]

o http://fmv. jku.at/lingeling/
GlueMiniSat [Nabeshima+ 2011]

o https://sites.google.com/a/nabelab.org/glueminisat/
Sat4j [Le Berre 2010]

o http://www.sat4j.org
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SAT

Don Knuth’s TAOCP

SAT will be a topic of the next fascicle 6A,
Volume 4 (Combinatorial Algorithms) of
TAOCP (The Art Of Computer Programming)
by Don Knuth.

o Current draft is already 246 pages long!

THE ART OF
COMPUTER PROGRAMMING
VOLUME 4  PRE-FASCICLE 6A

A (VERY INCOMPLETE)
DRAFT OF SECTION 7.2.2.2:
SATISFIABILITY

DONALD E. KNUTH  Stanford University

ADDISON-WESLEY vy

o http://www-cs-faculty.stanford.edu/~knuth/fasc6a.ps.gz
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SAT

Don Knuth’s TAOCP

He made an invited talk at SAT 2012 conference, and
demonstrated his own SAT solvers!

SATISFIABILITY
Tue Jgr or
Lomrurer
Froeranmine

Dow Kwurar —~ SAT 2012 ~ Trewro

o Donald E. Knuth: Satisfiability and the Art of Computer
Programming, SAT 2012 invited talk, 2012.

o http://www-cs-faculty.stanford.edu/~uno/sat2012.pdf
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Applications

Application to Combinatorial Problems

Graph Coloring Problem
Covering Array

Ramsey Number
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Erdos's Discrepancy Conjecture
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SAT Applications Summary

GCP (Graph Coloring Problem)

GCP as a decision problem

Find a vertex coloring with c colors of a given graph such that no
two adjacent vertices have the same color.

GCP can be formalized as a Constraint Satisfaction Problem
(CSP) on integers.

ve{l2,...,c} (veV)
u#v ({u,v} € E)
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SAT Applications Summary

Encoding CSP to SAT

Finite domain (arithmetic) CSP

o Variables
o Integer variables with finite domains

o £(x) : the lower bound of x
o u(x) : the upper bound of x

o Boolean variables
o Constraints

o Arithmetic operators: +, —, X, etc.
o Comparison operators: =, #, >, >, <, <
o Logical operators: —, A, V, =

o How to encode CSP variables to SAT?
o How to encode CSP constraints to SAT?



Applications
SAT encodings

There have been several methods proposed to encode CSP.

o Direct encoding is the most widely used one [de Kleer 1989].

o Order encoding shows a good performance for a wide variety
of problems [Tamura+ 2006].

o It is first used to encode job-shop scheduling problems by
[Crawford & Baker 1994].

o It succeeded to solve previously undecided problems in
open-shop scheduling, job-shop scheduling, two-dimensional
strip packing, etc.

o Other encodings:

Multivalued encoding [Selman+ 1992]
Support encoding [Kasif 1990]

Log encoding [lwama+ 1994
Log-support encoding [Gavanelli 2007]
Compact order encoding [Tanjo+ 2010]

© 06 0 0 o
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Applications
Direct encoding

In direct encoding [de Kleer 1989], a Boolean variable p(x = i) is
defined as true iff the integer variable x has the domain value i,
that is, x = 1I.

Boolean variables for each integer variable x

plx=1i)  ((x) < i< u(x))

For example, the following five Boolean variables are used to
encode an integer variable x € {2,3,4,5,6},
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Applications

Direct encoding (cont.)

At-least-one and at-most-one clauses are required to make
p(x = i) be true iff x = i.

Clauses for each integer variable x

p(x = £(x)) V -+ V plx = u(x))
“px=)Voplx=j)  (Hx) <i<j< u(x))

For example, 11 clauses are required for x € {2,3,4,5,6}.

11 clauses for x € {2,3,4,5,6}

p(x =2) V p(x =3)V p(x =4)V p(x =5) V p(x = 6)
“p(x=2)V-p(x=3)  —op(x=2)V-p(x=4)  =p(x=2)V-p(x=D5)
“p(x=2)V-p(x=6)  p(x=3)V-p(x=4)  —p(x=3)V-p(x=05)

—p(x =3) V =p(x = 6) —p(x = 4) V =p(x = 5)
—p(x = 4)V -p(x = 6) —p(x =5) V =p(x = 6)
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SAT Applications Summary

Direct encoding (cont.)

A constraint is encoded by enumerating its conflict points.

Constraint clauses

When x; = i1, ..., xk = ik violates the constraint, the following
clause is added.

~p(xt = i) V- V ~plxi = ik)
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Applications

Direct encoding (cont.)

A constraint x + y < 7 is encoded into the following 15 clauses by
enumerating conflict points (crossed points).

Direct encoding of x +y <7 when x,y € {2..6}
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Applications
Order encoding

In order encoding [Tamura+ 2006], a Boolean variable p(x < /) is
defined as true iff the integer variable x is less than or equal to the
domain value /7, that is, x < I.

Boolean variables for each integer variable x

p(x < i) (U(x) <i < u(x))

For example, the following four Boolean variables are used to
encode an integer variable x € {2,3,4,5,6},

4 Boolean variables for x € {2,3,4,5,6}

p(x<2) p(x<3) p(x<4) p(x<5)

o Boolean variable p(x < 6) is unnecessary since x < 6 is always
true.

22 /46



Applications
Order encoding (cont.)

The following clauses are required to make p(x < i) be true iff
x <.

Clauses for each integer variable x

p(x <i—=1)Vp(x <i) (Ux)<i<u(x))

For example, 3 clauses are required for x € {2,3,4,5,6}.

3 clauses for x € {2,3,4,5,6}

—p(x <2)Vp(x <3)
—p(x <3)Vp(x<4
—p(x <4)Vp(x <5

—
~— ~—
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Applications

Order encoding (cont.)

The following table shows possible satisfiable assignments for the
given clauses.

Satisifiable assignments

p(x <3) p(x<4) p(x <5) Interpretation
1
1
0
0
0

X =2
x =3
x=4
x=5
x=06

jei

—
X
N

~—

OO~ = =
O R Rk R
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SAT Applications Summary

Order encoding (cont.)

Satisfiable partial assignments

p(x <2) p(x<3) p(x<4) p(x<5) Interpretation
— — — — x=2..6
— — — 1 x=2.5
— — 1 1 x=2.4
— 1 1 1 x=2.3
0 — — — x=3..6
0 0 — — x=4.6
0 0 0 — x=5..6
0 — — 1 x=3.5
0 = 1 1 x=3..4
0 0 — 1 x=4.5

“—" means undefined.

o Partial assignments on Boolean variables represent bounds of
integer variables.
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SAT Applications Summary

Order encoding (cont.)

A constraint is encoded by enumerating its conflict regions instead
of conflict points.

Constraint clauses

o When all points (x1,...,xk) in the region ii < x3 <1, ...,
ix < xx < jk violate the constraint, the following clause is
added.

p(x1 < i) Voplxa <ji) V-V p(i <) Vop(xe < k)
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SAT Applications ga Summary

Order encoding (cont.)

Linear inequality >/ ; aix; < ¢ can be recursively encoded with
the following relation.

n
Z ajx; < ¢ <
i=1

(a < [c/a1]) (n=1,a1>0)
=(x1 < [c/a1] +1) (n=1,a1<0)
(X1<d71 \/Zax,gcfald) (n>2,a; > 0)
deDom(xy) i=2
/\(ﬂ(xlgd)\/Za,-x;gcfald) (n>2,a1 <0)
deDom(xy) =2



Applications

Order encoding (cont.)

Order encoding of x +y <7 when x,y € {2..6}

y
AN
7\
AN
N\
AN
6] N X X X X x
AN
AN
N\
5 ® X x X X
AN
AN
4 e @ X X X
N\
AN
N
3 e o o x X
AN
N\
AN
2 e o o e Xx
AN
N\
A
1 N
N\
AN
\
O 1 2 3 4 5 & 7 x
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Applications

Order encoding (cont.)

Order encoding of x +y <7 when x,y € {2..6}

y
~(y = 6) S
N\
\\
AN
6 XXX X %
\\
N\
5 ® X X X X
\\
4 e @ X X X
N\
AN
N
3 e o o x X
N\
AN
2 e o o e Xx
\\
A
1 N
\\
\
0 1 2 3 4 5 6 7 x
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Applications

Order encoding (cont.)

Order encoding of x +y <7 when x,y € {2..6}

y
p(y <5) 3
7\
AN
N\
AN
6 XXX X %
AN
AN
N\
5 ® X X x X
A
AN
AN
4 e @ X X X
N\
AN
N
3 e o ® Xx Xx
AN
N\
AN
2 e o o e Xx
AN
N\
A
1 N
N\
AN
\

0 1 2 3 4 5 6 7 x
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Applications

Order encoding (cont.)

Order encoding of x +y <7 when x,y € {2..6}

y
p(y <5) 3

7\
_‘(X23/\y25) AN

6l N X X X X x

AN
N
N\
5 % X X x X
AN
AN
4 e @ X X X
N\
AN
AN
3 e o ® x x
AN
N\
AN
2 e o o e Xx
AN
N\
A
1 N
N\
AN
\
0 1 2 3 4 5 6 7 x
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Applications

Order encoding (cont.)

Order encoding of x +y <7 when x,y € {2..6}

y
ply <5) S
p(x <2)V ply < 4) <

6l N X X X X x

\\
N\
5 % X X x X
AN
AN
4 e @ X X X
N\
AN
N
3 e o ® x x
AN
N\
AN
2 e o o e Xx
AN
N\
A
1 N
N\
AN
\
0 1 2 3 4 5 6 7 x
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Applications

Order encoding (cont.)

Order encoding of x +y <7 when x,y € {2..6}

y
p(y <5) S
p(x <2)Vp(y <4)
ﬁ(X24/\y24) 6 \\\x X X X X
5 \b\ X X X X
4 ° \\\ X X X
3 o o \\o\ x X%
2 e o o \b\ X
1 AN
0 1 2 3 4 5 6 7 x
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Applications

Order encoding (cont.)

Order encoding of x +y <7 when x,y € {2..6}

y

ply <5) S

p(X = 2) v p(y = 4) 6 \\\ X X X X X

p(x <3)Vp(y <3)
5 \b\ X X X X
4 ° \\\ X X X
3 e o \\o\ X %
2 e o o \b\ X
1 \\\\
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Applications

Order encoding (cont.)

Order encoding of x +y <7 when x,y € {2..6}

y

p(y <5) S

p(X = 2) v p(y = 4) 6 AN X X X x X

p(x <3)Vp(y <3)

_‘(XZS/\}/Z?’) 5 b\\x X X X
4 ° \\\ X X X
3 o o \\o\ X X
2 e o o \b\ X
1 \\\
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Applications

Order encoding (cont.)

Order encoding of x +y <7 when x,y € {2..6}

ply <5) S

p(X = 2) v p(y = 4) 6 AN X X X x X

p(x <3)Vp(y <3)

p(x§4)\/p(y<2) 5 b\\ X X x X
4 ° \\\ X X X
3 o o \\o\ X X
2 e o o \b\ X
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Applications

Order encoding (cont.)

Order encoding of x +y <7 when x,y € {2..6}

ply <5) S

p(X = 2) v p(y = 4) 6 AN X X X x X

p(x <3)Vp(y <3)

p(x§4)\/p(y<2) 5 b\\ X X X X

ﬁ(x > 6) 4 ° \\\ X X X%
3 o o \\o\ X X
2 e o o \b\ X
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Applications

Order encoding (cont.)

Order encoding of x +y <7 when x,y € {2..6}

ply <5)

p(x <2)Vp(y <4)

p(x <3)V p(y < 3) TN T T

P(x <4)Vp(y <2) o XX

p(X < 5) 4 ° \\\ X X X
g [ ) [ ) \\.\ X X
2 e o o \\b\\ X

33/46



Applications

Order encoding (cont.)

Order encoding of x +y <7 when x,y € {2..6}

G p(y <5)
G: p(x<2)Vvp(y <4)
G: p(x<3)Vp(y <3)
Ca: p(x<4)Vp(y <2)
Gs : p(x < 5)

o Suppose p(x < 3) becomes false (i.e. x > 4), then p(y < 3)
becomes true (i.e. y < 3) by unit propagation on Cs.

o This corresponds to the bound propagation in CSP solvers.

o It is shown that the order encoding is the only one translating
some tractable CSP to tractable SAT [Petke+ 2011].
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Applications
Queens Graph Coloring

The graph is given by a N x N chess board where any two cells in
the same row, column, or diagonal are considered to be adjacent.

o This problem is used in Knuth's TAOCP.

o N colors are sufficient when N = £+1 (mod 6).
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SAT Applications Summary

Queens Graph Coloring

N Colors Encoding #Vars #Clauses #Mems
7 7 (SAT) Direct 343 4417 416,570
7 7 (SAT) Order 294 3589 1,339,689
8 8 (UNSAT) Direct 512 7688 9,534,216,524
8 8 (UNSAT)  Order 448 6222  8,784,182,550

o Memory access count is measured by Knuth's “sat13" solver.
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SAT Applications Summary

Queens Graph Coloring

N Colors Encoding #Vars #Clauses #Mems
7 7 (SAT) Direct 343 4417 416,570
7 7 (SAT) Order 294 3589 1,339,689
8 8 (UNSAT) Direct 512 7688 9,534,216,524
8 8 (UNSAT)  Order 448 6222  8,784,182,550

o Memory access count is measured by Knuth's “sat13" solver.

For each k-clique {vi,va,..., v} (1 < v; < ¢), we can add extra
two clauses to accelerate the solving speed:

\/V;Zk \/v,-§c+1—k

1 1
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SAT Applications Summary

Queens Graph Coloring

N Colors Encoding #Vars #Clauses #Mems
7 7 (SAT) Direct 343 4417 416,570
7 7 (SAT) Order 294 3589 1,339,689
8 8 (UNSAT) Direct 512 7688 9,534,216,524
8 8 (UNSAT)  Order 448 6222  8,784,182,550

o Memory access count is measured by Knuth's “sat13" solver.

For each k-clique {vi,va,..., v} (1 < v; < ¢), we can add extra
two clauses to accelerate the solving speed:

\/V;Zk \/v;§c+1—k

1 1

N Colors Encoding #Vars #Clauses #Mems
7 7 (SAT) Order+ 294 3661 243,678
8 8 (UNSAT) Order+ 448 6306 30,470,236

36 /46



Applications

Covering Array

CAN(t, k, g)

New results

Previously known results

20 < CAN(2,7,4) < 21
80 < CAN(3,8,4) < 88
CAN(3,12,2) = 15
15 < CAN(3, k,2) (k > 13)
50 < CAN(5,9,2) < 54
CAN(6,8,2) = 85

19 < CAN(2,7,4) < 21
76 < CAN(3,8,4) < 88
14 < CAN(3,12,2) < 15

14 < CAN(3, k,2) (k > 13)
48 < CAN(5,9,2)

<5
84 < CAN(6,8,2) < 8

o Combination of the order encoding and Hnich's encoding is

used.

o Lower-bounds are updated for six instances and the optimum
size are decided for two instances [Banbara+, LPAR 2010].




Applications
Ramsey Number

Ramsey number R(s, t) is the minimum number n such that any
blue-red edge coloring of K,, contains either blue K or red Kj;.

SAT Encoding for a graph of n vertices V = {1,2,...,n}

o Boolean variables: e (for1<i<j<n)

o Clauses:

\/ —ej (for UC V, |U| =5)
ijeu, i<j
\/ g (forUcCV,|U=t)

ijeu, i<j

Fujita showed R(4,8) > 58 with his own SAT solver named SCSat
[Fujita+, SAT 2013].
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SAT Applications Summary

Erdos’s Discrepancy Conjecture

Paul Erdos conjectured that for any positive integer C in any
infinite +1 sequence (x,), there exists a subsequence x4, X24, X34,
..., Xkq for some positive integers k and d, such that

’Zf-;lx,'d‘ > C.

Kovev and Lisista showed in their SAT 2014 paper:
< 2 for any k

o a sequence of length 1160 satisfying ‘Zf:l Xid
and d, and

o a proof of discrepancy conjecture for C = 2, claiming that no
discrepancy 2 sequence of length 1161 (or more) exists.

They used SAT solvers to find a sequence of 1160, and also a
proof (13G bytes) for length 1161.



Applications Summary

Sugar: a SAT-based Constraint Solver
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Sugar

Sugar: a SAT-based Constraint Solver

encode
CspP SAT
: SAT Solver
'
Y
decode
Solution of CSP  [<& Solution of SAT

o Sugar is a SAT-based constraint solver using the order
encoding.

o It won in global constraint categories of 2008 and 2009
international CSP solver competitions.
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SAT Applications Summary

Example of Sugar CSP

(int v1 1 3)
(int v2 1 3)
(int v3 1 3)
(int v4 1 3)
('= vl v2)
('= v1 v3)
('= vl v4)
('= v2 v4)
('= v3 v4)



CSC 2009 (Global Categories)

Series Sugar+m  Sugar+p  Mistral Choco  bpsolver
BIBD (83) 76 77 76 58 35
Costas Array (11) 8 8 9 9 9
Latin Square ( 10) 10 9 5 5 5
Magic Square (18) 8 8 13 15 11
NengFa (3 3 3 3 3 3
Orthogonal Latin Square ( 9) 3 3 3 2 3
Perfect Square Packing ( 74) 54 53 40 47 36
Pigeons (19) 19 19 19 19 19
Quasigroup Existence  ( 35) 30 29 29 28 30
Pseudo-Boolean (100) 68 75 59 53 70
BQWH ( 20) 20 20 20 20 20
Cumulative Job-Shop  ( 10) 4 4 2 1 0
RCPSP ( 78) 78 78 78 77 75
Cabinet ( 40) 40 40 40 40 40
Timetabling ( 46) 25 42 39 14 1
Total (556) 446 468 435 391 357

o The number of solved instances in global categories
o Sugar+m : Sugar with MiniSat 2.0 backend
o Sugar+p : Sugar with PicoSAT 535 backend
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CSC 2009 (Global Categories)

CPU time (seconds)

1800

1600

1400

1200

1000

800

600

400

200

T
Sugar+minisat ——
Sugar+picosat ——
Mistral ——
Choco2.1.1 ——
bpsolver —+—

100

200 300
Number of solved instances

44/ 46



Summary
Summary
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©

@ Sugar: a SAT-based Constraint Solver
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