Solving Constraint Satisfaction Problems by a SAT Solver

Naoyuki Tamura, Tomoya Tanjo, and Mutsunori Banbara

Kobe University, JAPAN

CICLOPS-WLPE-2010

Contents

A SAT-based Constraint Solver Sugar

Contents

- SAT problems and SAT solvers
- SAT encodings of Constraint Satisfaction Problems (CSP)
- A SAT-based Constraint Solver Sugar

Contents

- SAT problems and SAT solvers
- SAT encodings of Constraint Satisfaction Problems (CSP)
- A SAT-based Constraint Solver Sugar
- Solving CSP by Examples
 - Open-Shop Scheduling (OSS) Problems
 - Latin Square Problems
- Oemonstration
 - Huge Sudoku Puzzles
 - Scala Interface

SAT problems and SAT solvers

SAT problems

SAT

SAT (Boolean satisfiability testing) is a problem to decide whether a given Boolean formula has any satisfying truth assignment.

- SAT is a central problem in Computer Science both theoretically and practically.
- SAT was the first NP-complete problem [Cook 1971].
- SAT has very efficient implementation (MiniSat, etc.)
- SAT-based approach is becoming popular in many areas.

SAT instances

SAT instances are given in the conjunctive normal form (CNF).

CNF formula

- A CNF formula is a conjunction of clauses.
- A clause is a disjunction of literals.
- A literal is either a Boolean variable or its negation.

DIMACS CNF is used as the standard format for CNF files.

p cnf 9 7	; Number of variables and clauses
120	; $a \lor b$
930	; $c \lor d$
1840	; $a \lor e \lor f$
-2 -4 5 0	; $\neg b \lor \neg f \lor g$
-460	; $\neg f \lor h$
-2 -6 7 0	; $\neg b \lor \neg h \lor i$
-5 -7 0	; $\neg g \lor \neg i$

Solving Constraint Satisfaction Problems by a SAT Solver

SAT solvers

SAT Solver

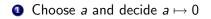
SAT solver is a program to decide whether a given SAT instance is satisfiable (SAT) or unsatisfiable (UNSAT). Usually, it also returns a truth assignment as a solution when the instance is SAT.

- Systematic (complete) SAT solver answers SAT or UNSAT.
 - Most of them are based on the DPLL algorithm.
- Stochastic (incomplete) SAT solver only answers SAT (no answers for UNSAT).
 - Local search algorithms are used.

DPLL Algorithm

[Davis & Putnam 1960], [Davis, Logemann & Loveland 1962]

- (1) function DPLL(S: a CNF formula, σ : a variable assignment)
- (2) $\sigma := UP(S, \sigma); /* unit propagation */$
- (3) if S is satisfied by σ then return true;
- (4) if S is falsified by σ then return false;
- (5) choose an unassigned variable x from $S\sigma$;
- (6) return DPLL(S, $\sigma \cup \{x \mapsto 0\}$) or DPLL(S, $\sigma \cup \{x \mapsto 1\}$);
- (1) function UP(S: a CNF formula, σ : a variable assignment) (2) while $S\sigma$ contains a unit clause $\{I\}$ do (3) if I is positive then $\sigma := \sigma \cup \{I \mapsto 1\}$; (4) else $\sigma := \sigma \cup \{\overline{I} \mapsto 0\}$; (5) return σ ;
- $S\sigma$ represents a CNF formula obtained by applying σ to S.



$$C_{1}: a \lor b$$

$$C_{2}: c \lor d$$

$$C_{3}: a \lor e \lor f$$

$$C_{4}: \neg b \lor \neg f \lor g$$

$$C_{5}: \neg f \lor h$$

$$C_{6}: \neg b \lor \neg h \lor i$$

$$C_{7}: \neg g \lor \neg i$$

 $C_1 : a \lor b$ $C_2 : c \lor d$ $C_3 : a \lor e \lor f$ $C_4 : \neg b \lor \neg f \lor g$ $C_5 : \neg f \lor h$ $C_6 : \neg b \lor \neg h \lor i$ $C_7 : \neg g \lor \neg i$

• Choose *a* and decide $a \mapsto 0$ • Propagate $b \mapsto 1$ from C_1

 $C_1 : a \lor b$ $C_2 : c \lor d$ $C_3 : a \lor e \lor f$ $C_4 : \neg b \lor \neg f \lor g$ $C_5 : \neg f \lor h$ $C_6 : \neg b \lor \neg h \lor i$ $C_7 : \neg g \lor \neg i$

• Choose a and decide $a \mapsto 0$

- Propagate $b \mapsto 1$ from C_1
- **2** Choose *c* and decide $c \mapsto 0$

- Choose a and decide $a \mapsto 0$
 - Propagate $b \mapsto 1$ from C_1
- **2** Choose c and decide $c \mapsto 0$
 - Propagate $d \mapsto 1$ from C_2

SAT SAT solvers SAT-based

DPLL

- Choose a and decide $a \mapsto 0$
 - Propagate $b\mapsto 1$ from \mathcal{C}_1
- 2 Choose c and decide $c \mapsto 0$
 - Propagate $d \mapsto 1$ from C_2
- **3** Choose e and decide $e \mapsto 0$

- Choose a and decide $a \mapsto 0$
 - Propagate $b\mapsto 1$ from \mathcal{C}_1
- 2 Choose c and decide $c \mapsto 0$
 - Propagate $d \mapsto 1$ from C_2
- **3** Choose e and decide $e \mapsto 0$
 - Propagate $f \mapsto 1$ from C_3

- Choose a and decide $a \mapsto 0$
 - Propagate $b\mapsto 1$ from \mathcal{C}_1
- 2 Choose c and decide $c \mapsto 0$
 - Propagate $d \mapsto 1$ from C_2
- **3** Choose e and decide $e \mapsto 0$
 - Propagate $f \mapsto 1$ from C_3
 - Propagate $g \mapsto 1$ from C_4

- Choose a and decide $a \mapsto 0$
 - Propagate $b \mapsto 1$ from C_1
- 2 Choose c and decide $c \mapsto 0$
 - Propagate $d \mapsto 1$ from C_2
- **3** Choose e and decide $e \mapsto 0$
 - Propagate $f \mapsto 1$ from C_3
 - Propagate $g \mapsto 1$ from C_4
 - Propagate $i \mapsto 0$ from C_7

- Choose a and decide $a \mapsto 0$
 - Propagate $b\mapsto 1$ from \mathcal{C}_1
- 2 Choose c and decide $c \mapsto 0$
 - Propagate $d \mapsto 1$ from C_2
- **3** Choose e and decide $e \mapsto 0$
 - Propagate $f \mapsto 1$ from C_3
 - Propagate $g \mapsto 1$ from C_4
 - Propagate $i \mapsto 0$ from C_7
 - Propagate $h \mapsto 1$ from C_5

- Choose a and decide $a \mapsto 0$
 - Propagate $b\mapsto 1$ from \mathcal{C}_1
- 2 Choose c and decide $c \mapsto 0$
 - Propagate $d \mapsto 1$ from C_2
- **3** Choose e and decide $e \mapsto 0$
 - Propagate $f \mapsto 1$ from C_3
 - Propagate $g \mapsto 1$ from C_4
 - Propagate $i \mapsto 0$ from C_7
 - Propagate $h \mapsto 1$ from C_5
 - Conflict occurred at C_6

- Choose a and decide $a \mapsto 0$
 - Propagate $b\mapsto 1$ from \mathcal{C}_1
- 2 Choose c and decide $c \mapsto 0$
 - Propagate $d \mapsto 1$ from C_2
- **3** Choose e and decide $e \mapsto 0$
 - Propagate $f \mapsto 1$ from C_3
 - Propagate $g \mapsto 1$ from C_4
 - Propagate $i \mapsto 0$ from C_7
 - Propagate $h \mapsto 1$ from C_5
 - Conflict occurred at C_6
- $\textbf{9} \ \ \mathsf{Backtrack} \ \ \mathsf{and} \ \ \mathsf{decide} \ \ e \mapsto 1$

Modern SAT solvers

- The following techniques have been introduced to DPLL and they drastically improved the performance of modern SAT solvers.
 - CDCL (Conflict Driven Clause Learning) [Silva 1996]
 - Non-chronological Backtracking [Silva 1996]
 - Random Restarts [Gomes 1998]
 - Watched Literals [Moskewicz & Zhang 2001]
 - Variable Selection Heuristics [Moskewicz & Zhang 2001]
- Chaff and zChaff solvers made one to two orders magnitude improvement [2001].
- SAT competitions and SAT races since 2002 contribute to the progress of SAT solver implementation techniques.
- MiniSat solver showed its good performance in the 2005 SAT competition with about 2000 lines of code in C++.
- Modern SAT solvers can handle instances with more than 10⁶ variables and 10⁷ clauses.

SAT Encodings Sugar Examples Demo Summary

CDCL (Conflict Driven Clause Learning)

- At conflict, a reason of the conflict is extracted as a clause and it is remembered as a learnt clause.
- Learnt clauses significantly prunes the search space in the further search.
- Learnt clause is generated by resolution in backward direction.
- The resolution is stopped at First UIP (Unique Implication Point) [Moskewicz & Zhang 2001].

In the previous example, $\neg b \lor \neg f$ is generated as a learnt clause.

$$\frac{C_{6}:\neg b \lor \neg h \lor i \quad C_{5}:\neg f \lor h}{\frac{\neg b \lor \neg f \lor i \quad C_{7}:\neg g \lor \neg i}{\frac{\neg b \lor \neg f \lor \neg g \quad C_{4}:\neg b \lor \neg f \lor g}{\neg b \lor \neg f}} C_{4}:\neg b \lor \neg f \lor g}$$

Naoyuki Tamura, Tomoya Tanjo, and Mutsunori Banbara

Solving Constraint Satisfaction Problems by a SAT Solver

SAT-based Approach

SAT-based approach is becoming popular for solving hard combinatorial problems.

- Planning (SATPLAN, Blackbox) [Kautz & Selman 1992]
- Automatic Test Pattern Generation [Larrabee 1992]
- Job-shop Scheduling [Crawford & Baker 1994]
- Software Specification (Alloy) [1998]
- Bounded Model Checking [Biere 1999]
- Software Package Dependency Analysis (SATURN)
 - SAT4J is used in Eclipse 3.4.
- Rewriting Systems (AProVE, Jambox)
- Answer Set Programming (clasp, Cmodels-2)
- FOL Theorem Prover (iProver, Darwin)
- First Order Model Finder (Paradox)
- Constraint Satisfaction Problems (Sugar) [Tamura et al. 2006]

Why SAT-based? (personal opinions)

SAT solvers are very fast.

- Clever implementation techniques, such as two literal watching.
 - It minimizes house-keeping informations for backtracking.
- Cache-aware implementation [Zhang & Malik 2003]
 - For example, a SAT-encoded Open-shop Scheduling problem instance gp10-10 is solved within 4 seconds with more than 99% cache hit rate by MiniSat.

\$ valgrind	tool=cachegri	ind	d minisat gp10–	-10-1091	.cnf
L2 refs:	42,842,531	(31,633,380 rd	+11,209	,151 wr)
L2 misses:	25,674,308	(19,729,255 rd	+ 5,945	,053 wr)
L2 miss rate:	0.4%	(0.4%	+	1.0%)

Why SAT-based? (personal opinions)

SAT-based approach is similar to RISC approach in '80s by Patterson.

- RISC: Reduced Instruction Set Computer
- Patterson claimed a computer of a "reduced" and fast instruction set with an efficient optimizing compiler can be faster than a "complex" computer (**CISC**).

 $\begin{array}{rcl} \mathsf{SAT} \ \mathsf{Solver} & \Longleftrightarrow & \mathsf{RISC} \\ \mathsf{SAT} \ \mathsf{Encoder} & \longleftrightarrow & \mathsf{Optimizing} \ \mathsf{Compiler} \end{array}$

• In that sense, study of both SAT solvers and SAT encodings are important and interesting topics.

SAT encodings of Constraint Satisfaction Problems

Finite linear CSP

Finite linear CSP

- Integer variables with finite domains
 - $\ell(x)$: the lower bound of x
 - u(x) : the upper bound of x
- Boolean variables
- Arithmetic operators: +, -, constant multiplication, etc.
- Comparison operators: $=, \neq, \geq, >, \leq, <$
- Logical operators: \neg , \land , \lor , \Rightarrow
- We can restrict the comparison to ∑ a_ix_i ≤ c without loss of generality where x_i's are integer variables and a_i's and c are integer constants.
- We also use the followings in further descriptions.
 - *n* : number of integer variables
 - *d* : maximum domain size of integer expressions

SAT encodings

There have been several methods proposed to encode CSP into SAT.

- Direct encoding is the most widely used one [de Kleer 1989].
- Order encoding is a new encoding showing a good performance for a wide variety of problems [Tamura et al. 2006].
 - It is first used to encode job-shop scheduling problems by [Crawford & Baker 1994].
 - It succeeded to solve previously undecided problems in open-shop scheduling, job-shop scheduling, and two-dimensional strip packing.
- Other encodings:
 - Multivalued encoding [Selman 1992]
 - Support encoding [Kasif 1990]
 - Log encoding [Iwama 1994]
 - Log-support encoding [Gavanelli 2007]

Direct encoding

In direct encoding [de Kleer 1989], a Boolean variable p(x = i) is defined as true iff the integer variable x has the domain value *i*, that is, x = i.

Boolean variables for each integer variable x

$$p(x=i)$$
 $(\ell(x) \le i \le u(x))$

For example, the following five Boolean variables are used to encode an integer variable $x \in \{2, 3, 4, 5, 6\}$,

5 Boolean variables for $x \in \{2, 3, 4, 5, 6\}$

$$p(x = 2)$$
 $p(x = 3)$ $p(x = 4)$ $p(x = 5)$ $p(x = 6)$

Direct encoding (cont.)

The following at-least-one and at-most-one clauses are required to make p(x = i) be true iff x = i.

Clauses for each integer variable x

$$p(x = \ell(x)) \lor \cdots \lor p(x = u(x))$$

$$\neg p(x = i) \lor \neg p(x = j) \qquad (\ell(x) \le i < j \le u(x))$$

For example, 11 clauses are required for $x \in \{2, 3, 4, 5, 6\}$.

11 clauses for $x \in \{2, 3, 4, 5, 6\}$

$$\begin{array}{l} p(x=2) \lor p(x=3) \lor p(x=4) \lor p(x=5) \lor p(x=6) \\ \neg p(x=2) \lor \neg p(x=3) & \neg p(x=2) \lor \neg p(x=4) & \neg p(x=2) \lor \neg p(x=5) \\ \neg p(x=2) \lor \neg p(x=6) & \neg p(x=3) \lor \neg p(x=4) & \neg p(x=3) \lor \neg p(x=5) \\ \neg p(x=3) \lor \neg p(x=6) & \neg p(x=4) \lor \neg p(x=5) \\ \neg p(x=4) \lor \neg p(x=6) & \neg p(x=5) \lor \neg p(x=6) \end{array}$$

Direct encoding (cont.)

A constraint is encoded by enumerating its conflict points.

Constraint clauses

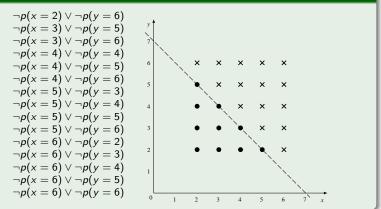
• When $x_1 = i_1, \ldots, x_k = i_k$ violates the constraint, the following clause is added.

$$\neg p(x_1 = i_1) \lor \cdots \lor \neg p(x_k = i_k)$$

Direct encoding (cont.)

A constraint $x + y \le 7$ is encoded into the following 15 clauses by enumerating conflict points (crossed points).

15 clauses for $x + y \le 7$



Naoyuki Tamura, Tomoya Tanjo, and Mutsunori Banbara

Order encoding

In order encoding [Tamura et al. 2006], a Boolean variable $p(x \le i)$ is defined as true iff the integer variable x is less than or equal to the domain value i, that is, $x \le i$.

Boolean variables for each integer variable x

$$p(x \leq i)$$
 $(\ell(x) \leq i < u(x))$

For example, the following four Boolean variables are used to encode an integer variable $x \in \{2, 3, 4, 5, 6\}$,

4 Boolean variables for $x \in \{2, 3, 4, 5, 6\}$

$$p(x \le 2)$$
 $p(x \le 3)$ $p(x \le 4)$ $p(x \le 5)$

Boolean variable $p(x \le 6)$ is unnecessary since $x \le 6$ is always true.

Order encoding (cont.)

The following clauses are required to make $p(x \le i)$ be true iff $x \le i$.

Clauses for each integer variable x

$$eg p(x \leq i-1) \lor p(x \leq i) \quad (\ell(x) < i < u(x))$$

For example, 3 clauses are required for $x \in \{2, 3, 4, 5, 6\}$.

3 clauses for $x \in \{2, 3, 4, 5, 6\}$

$$egin{aligned} & \neg p(x \leq 2) \lor p(x \leq 3) \\ & \neg p(x \leq 3) \lor p(x \leq 4) \\ & \neg p(x \leq 4) \lor p(x \leq 5) \end{aligned}$$

Order encoding (cont.)

The following table shows possible satisfiable assignments for the given clauses.

$$egin{aligned} & \neg p(x \leq 2) \lor p(x \leq 3) \\ & \neg p(x \leq 3) \lor p(x \leq 4) \\ & \neg p(x \leq 4) \lor p(x \leq 5) \end{aligned}$$

Satisifiable assignments

$p(x \leq 2)$	$p(x \leq 3)$	$p(x \leq 4)$	$p(x \leq 5)$	Intepretation
1	1	1	1	<i>x</i> = 2
0	1	1	1	<i>x</i> = 3
0	0	1	1	<i>x</i> = 4
0	0	0	1	<i>x</i> = 5
0	0	0	0	<i>x</i> = 6

Direct encoding Order encoding

Order encoding (cont.)

Satisfiable	partial	assignments
-------------	---------	-------------

$p(x \leq 2)$	$p(x \leq 3)$	$p(x \leq 4)$	$p(x \leq 5)$	Intepretation
_	—	—	—	x = 26
_	_	_	1	<i>x</i> = 25
_	_	1	1	<i>x</i> = 24
_	1	1	1	<i>x</i> = 23
0	_	_	_	x = 36
0	0	_	_	x = 46
0	0	0	_	x = 56
0	_	_	1	<i>x</i> = 35
0	_	1	1	<i>x</i> = 34
0	0	_	1	<i>x</i> = 45

"-" means undefined.

 Partial assignments on Boolean variables represent bounds of integer variables.

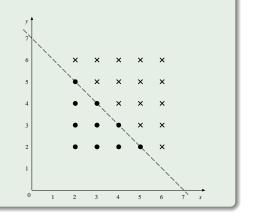
Naoyuki Tamura, Tomoya Tanjo, and Mutsunori Banbara Solving Constraint Satisfaction Problems by a SAT Solver

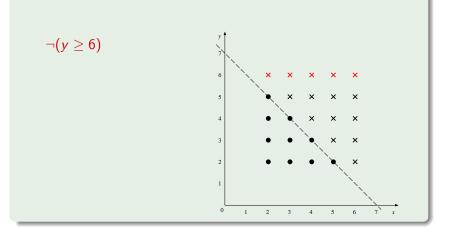
A constraint is encoded by enumerating its conflict regions instead of conflict points.

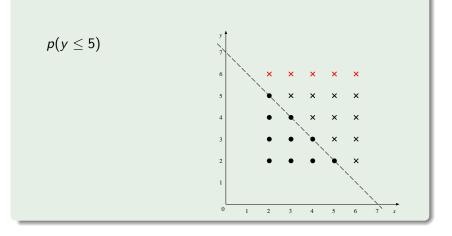
Constraint clauses

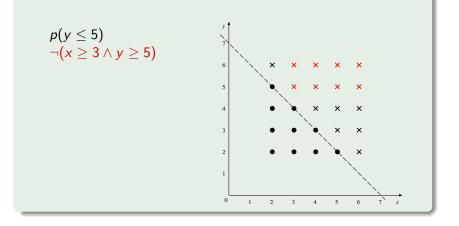
• When all points (x_1, \ldots, x_k) in the region $i_1 < x_1 \le j_1, \ldots, i_k < x_k \le j_k$ violate the constraint, the following clause is added.

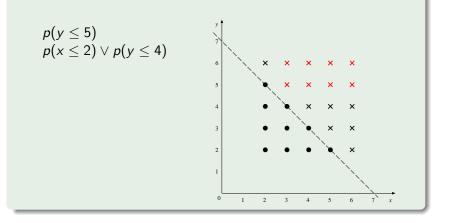
$$p(x_1 \leq i_1) \lor \neg p(x_1 \leq j_1) \lor \cdots \lor p(x_k \leq i_k) \lor \neg p(x_k \leq j_k)$$

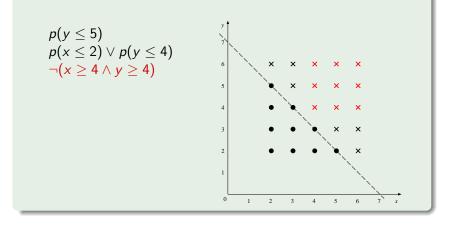


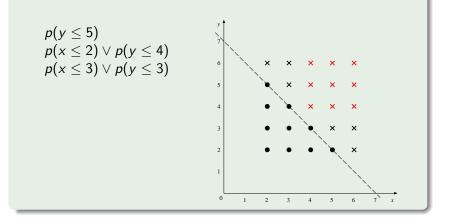


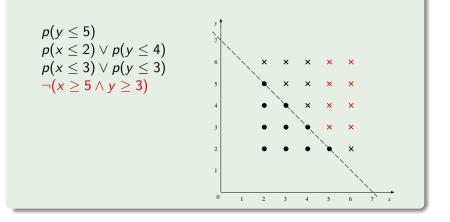


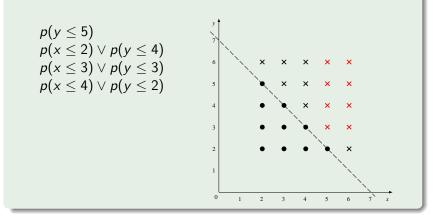


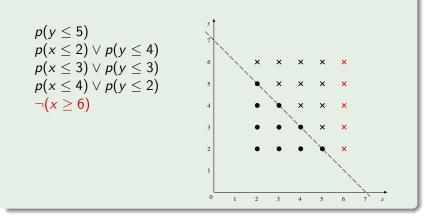


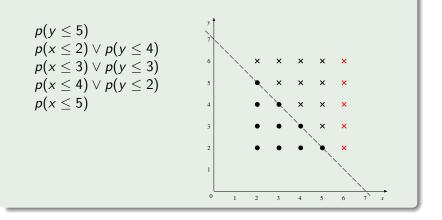












Bound propagation in order encoding

$$\begin{array}{ll} C_1: & p(y \leq 5) \\ C_2: & p(x \leq 2) \lor p(y \leq 4) \\ C_3: & p(x \leq 3) \lor p(y \leq 3) \\ C_4: & p(x \leq 4) \lor p(y \leq 2) \\ C_5: & p(x \leq 5) \end{array}$$

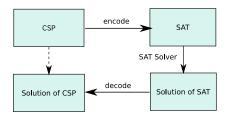
- When p(x ≤ 3) becomes false (i.e. x ≥ 4), p(y ≤ 3) becomes true (i.e. y ≤ 3) by unit propagation on C₃.
- This corresponds to the bound propagation in CSP solvers.

A SAT-based Constraint Solver Sugar

SAT Encodings Sugar Examples Demo Summary

Sugar

Sugar: a SAT-based Constraint Solver



- Sugar is a constraint solver based on the order encoding.
- In the 2008 CSP solver competition, Sugar became the winner in GLOBAL category.
- In the 2008 Max-CSP solver competition, Sugar became the winner in three categories of INTENSIONAL and GLOBAL constraints.
- In the **2009 CSP solver competition**, Sugar became the winner in three categories of GLOBAL constraints.

Components of Sugar

• Java program

- Parser
- Linearizer
- Simplifier of eliminating variable domains by General Arc Consistency algorithm
- Encoder based on the order encoding
- Decoder
- External SAT solver
 - MiniSat (default), PicoSAT, and any other SAT solvers

Perl script

• Command line script

Sugar

Translation of constraints

- Linear constraints are translated by the order encoding.
- Non-linear constraints are translated in linear forms as follows:

Expression	Conversion
E = F	$(E \leq F) \land (E \geq F)$
$E \neq F$	$(E < F) \lor (E > F)$
max(E, F)	X
	with $(x \ge E) \land (x \ge F) \land ((x \le E) \lor (x \le F))$
$\min(E, F)$	X
	with $(x \leq E) \land (x \leq F) \land ((x \geq E) \lor (x \geq F))$
abs(<i>E</i>)	$\max(E,-E)$
E div c	q
	with $(E = c \ q + r) \land (0 \le r) \land (r < c)$
<i>E</i> mod <i>c</i>	r
	with $(E = c q + r) \land (0 \le r) \land (r < c)$

Translation of global constraints

• all different $(x_1, x_2, ..., x_n)$ constraint is translated as follows:

Sugar

 $igwedge_{i < j} (x_i
eq x_j) \ \bigvee_{i < j} (x_i \ge lb + n - 1) \ \bigvee_{i} (x_i \le ub - n + 1)$

where the last two are extra pigeon hole clauses, and *lb* and *ub* are the lower and upper bounds of $\{x_1, x_2, \ldots, x_n\}$.

• Other global constraints (element, weightedsum, cumulative, etc.) are translated in a straightforward way.

Solving CSP by Examples

- Open-Shop Scheduling (OSS) Problems
- Latin Square Problems

SAT Encodings Sugar Examples Demo Summary OSS Latin

Open-Shop Scheduling (OSS) Problems

- An OSS problem consists of *n* jobs and *n* machines.
 - $J_0, J_1, \ldots, J_{n-1}$
 - $M_0, M_1, \ldots, M_{n-1}$
- Each job J_i consists of n operations.

•
$$O_{i0}, O_{i1}, \ldots, O_{i(n-1)}$$

- An operation O_{ij} of job J_i is processed at machine M_j , and has a positive processing time p_{ij} .
- Operations of the same job *J_i* must be processed sequentially but can be processed in any order.
- Each machine M_j can handle one operation at a time.

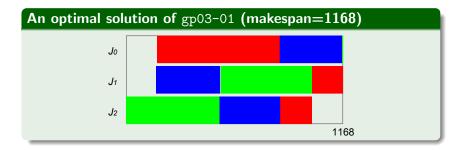
Objective of OSS

- Minimize the completion time (*makespan*) of finishing all jobs.
- OSS is highly non-deterministic. OSS with n jobs and n machines has (n!)²ⁿ feasibile schedulings.

Naoyuki Tamura, Tomoya Tanjo, and Mutsunori Banbara Solving Constraint Satisfaction Problems by a SAT Solver

OSS instance gp03-01

$$(p_{ij}) = \left(egin{array}{cccc} 661 & 6 & 333 \ 168 & 489 & 343 \ 171 & 505 & 324 \end{array}
ight)$$



Naoyuki Tamura, Tomoya Tanjo, and Mutsunori Banbara Solving Constraint Satisfaction Problems by a SAT Solver

Constraint Modeling of gp03-01

Defining integer variables

- m: makespan
- s_{ij}: start time of the operation O_{ij}

Defining constraints

• For each s_{ij},

$$s_{ij} + p_{ij} \leq m$$

• For each pair of operations O_{ij} and O_{il} of the same job J_i ,

$$(s_{ij} + p_{ij} \leq s_{il}) \lor (s_{il} + p_{il} \leq s_{ij})$$

• For each pair of operations O_{ij} and O_{kj} of the same machine M_j ,

$$(s_{ij} + p_{ij} \leq s_{kj}) \lor (s_{kj} + p_{kj} \leq s_{ij})$$

Constraint Modeling of gp03-01

CSP representation of gp03-01

 $s_{00} + 661 < m$ $s_{01} + 6 < m$ $s_{02} + 333 < m$ $s_{22} + 324 < m$ $(s_{00} + 661 < s_{01}) \lor (s_{01} + 6 < s_{00})$ $(s_{00} + 661 < s_{02}) \lor (s_{02} + 333 < s_{00})$ $(s_{01} + 6 < s_{02}) \lor (s_{02} + 333 < s_{01})$ $(s_{02} + 333 < s_{12}) \lor (s_{12} + 343 < s_{02})$ $(s_{02} + 333 \le s_{22}) \lor (s_{22} + 324 \le s_{02})$ $(s_{12} + 343 < s_{22}) \lor (s_{22} + 324 < s_{12})$

Solving gp03-01 by Sugar

Satisfiable case ($m \le 1168$)

Solving gp03-01 by Sugar

Satisfiable case ($m \le 1168$)

- MiniSat finds a solution by performing
 - 12 decisions and
 - 1 conflict (backtrack).

Solving gp03-01 by Sugar

Satisfiable case ($m \le 1168$)

- MiniSat finds a solution by performing
 - 12 decisions and
 - 1 conflict (backtrack).

Unsatisfiable case ($m \le 1167$)

Solving gp03-01 by Sugar

Satisfiable case ($m \le 1168$)

- MiniSat finds a solution by performing
 - 12 decisions and
 - 1 conflict (backtrack).

Unsatisfiable case ($m \le 1167$)

MiniSat proves the unsatisfiability by performing

- 6 decisions and
- 5 conflicts (backtracks).

• Efficient bound propagations were realized by unit propagations of MiniSat solver.

Latin Square Problems

Latin Square Problem of size 5

x ₁₁	<i>x</i> ₁₂	<i>x</i> ₁₃	<i>x</i> ₁₄	<i>x</i> ₁₅
<i>x</i> ₂₁	<i>x</i> ₂₂	<i>x</i> ₂₃	<i>x</i> ₂₄	<i>x</i> ₂₅
<i>x</i> ₃₁	<i>x</i> ₃₂	<i>X</i> 33	<i>X</i> 34	<i>X</i> 35
<i>x</i> ₄₁	<i>x</i> ₄₂	<i>X</i> 43	<i>x</i> 44	<i>X</i> 45
<i>x</i> ₅₁	<i>x</i> ₅₂	<i>X</i> 53	<i>X</i> 54	<i>X</i> 55

• $x_{ij} \in \{1, 2, 3, 4, 5\}$

Latin Square Problems

x ₁₁	<i>x</i> ₁₂	<i>x</i> ₁₃	<i>x</i> ₁₄	<i>x</i> ₁₅
<i>x</i> ₂₁	<i>x</i> ₂₂	<i>x</i> ₂₃	<i>x</i> ₂₄	<i>x</i> ₂₅
<i>x</i> ₃₁	<i>x</i> ₃₂	<i>X</i> 33	<i>X</i> 34	<i>X</i> 35
<i>x</i> ₄₁	<i>x</i> ₄₂	<i>X</i> 43	<i>x</i> 44	<i>x</i> 45
<i>x</i> ₅₁	<i>x</i> ₅₂	<i>X</i> 53	<i>X</i> 54	<i>x</i> 55

- $x_{ii} \in \{1, 2, 3, 4, 5\}$
- all different in each row (5 rows)

Latin Square Problems

x ₁₁	<i>x</i> ₁₂	<i>x</i> ₁₃	<i>x</i> ₁₄	<i>x</i> ₁₅
<i>x</i> ₂₁	<i>x</i> ₂₂	<i>x</i> ₂₃	<i>x</i> ₂₄	<i>x</i> ₂₅
<i>x</i> ₃₁	<i>x</i> ₃₂	<i>X</i> 33	<i>X</i> 34	<i>X</i> 35
<i>x</i> ₄₁	<i>x</i> ₄₂	<i>X</i> 43	<i>x</i> 44	<i>x</i> 45
<i>x</i> ₅₁	<i>x</i> ₅₂	<i>X</i> 53	<i>X</i> 54	<i>x</i> 55

- $x_{ii} \in \{1, 2, 3, 4, 5\}$
- all different in each row (5 rows)

Latin Square Problems

x ₁₁	<i>x</i> ₁₂	<i>x</i> ₁₃	<i>x</i> ₁₄	<i>x</i> ₁₅
<i>x</i> ₂₁	<i>x</i> ₂₂	<i>x</i> ₂₃	<i>x</i> ₂₄	<i>x</i> ₂₅
<i>x</i> ₃₁	<i>x</i> ₃₂	<i>X</i> 33	<i>X</i> 34	X35
<i>x</i> ₄₁	<i>x</i> ₄₂	<i>x</i> ₄₃	<i>X</i> 44	X45
<i>x</i> ₅₁	<i>x</i> ₅₂	<i>X</i> 53	<i>X</i> 54	<i>X</i> 55

- $x_{ij} \in \{1, 2, 3, 4, 5\}$
- alldifferent in each row (5 rows)
- alldifferent in each column (5 columns)

Latin Square Problems

x ₁₁	<i>x</i> ₁₂	<i>x</i> ₁₃	<i>x</i> ₁₄	<i>x</i> ₁₅
<i>x</i> ₂₁	<i>x</i> ₂₂	<i>x</i> ₂₃	<i>x</i> ₂₄	<i>x</i> ₂₅
<i>x</i> ₃₁	<i>x</i> ₃₂	<i>X</i> 33	<i>X</i> 34	X35
<i>x</i> ₄₁	<i>x</i> ₄₂	<i>x</i> ₄₃	<i>X</i> 44	X45
<i>x</i> ₅₁	<i>x</i> 52	<i>x</i> 53	<i>X</i> 54	<i>X</i> 55

- $x_{ij} \in \{1, 2, 3, 4, 5\}$
- alldifferent in each row (5 rows)
- alldifferent in each column (5 columns)

Latin Square Problems

<i>x</i> ₁₁	<i>x</i> ₁₂	<i>x</i> ₁₃	<i>x</i> ₁₄	<i>x</i> ₁₅
<i>x</i> ₂₁	<i>x</i> ₂₂	<i>x</i> ₂₃	<i>x</i> ₂₄	<i>x</i> ₂₅
<i>x</i> ₃₁	<i>x</i> ₃₂	<i>X</i> 33	<i>X</i> 34	X35
<i>x</i> ₄₁	<i>x</i> ₄₂	<i>x</i> ₄₃	<i>x</i> 44	X45
<i>x</i> ₅₁	<i>x</i> ₅₂	<i>X</i> 53	<i>X</i> 54	<i>X</i> 55

- $x_{ij} \in \{1, 2, 3, 4, 5\}$
- alldifferent in each row (5 rows)
- alldifferent in each column (5 columns)
- alldifferent in each diagonal (10 diagonals)

Latin Square Problems

x ₁₁	<i>x</i> ₁₂	<i>x</i> ₁₃	<i>x</i> ₁₄	<i>x</i> ₁₅
<i>x</i> ₂₁	<i>x</i> ₂₂	<i>x</i> ₂₃	<i>x</i> ₂₄	<i>x</i> ₂₅
<i>x</i> ₃₁	<i>x</i> ₃₂	<i>X</i> 33	<i>X</i> 34	X35
<i>x</i> ₄₁	<i>x</i> ₄₂	<i>x</i> ₄₃	<i>x</i> 44	<i>x</i> 45
<i>x</i> ₅₁	<i>x</i> ₅₂	<i>x</i> 53	<i>X</i> 54	<i>X</i> 55

- $x_{ij} \in \{1, 2, 3, 4, 5\}$
- alldifferent in each row (5 rows)
- alldifferent in each column (5 columns)
- alldifferent in each diagonal (10 diagonals)

Latin Square Problems

x ₁₁	<i>x</i> ₁₂	<i>x</i> ₁₃	<i>x</i> ₁₄	<i>x</i> ₁₅
<i>x</i> ₂₁	<i>x</i> ₂₂	<i>x</i> ₂₃	<i>x</i> ₂₄	<i>x</i> ₂₅
<i>x</i> ₃₁	<i>x</i> ₃₂	<i>X</i> 33	<i>X</i> 34	X35
<i>x</i> ₄₁	<i>x</i> ₄₂	<i>x</i> ₄₃	<i>x</i> 44	<i>x</i> 45
<i>x</i> ₅₁	<i>x</i> ₅₂	<i>x</i> 53	<i>X</i> 54	<i>x</i> 55

- $x_{ij} \in \{1, 2, 3, 4, 5\}$
- alldifferent in each row (5 rows)
- alldifferent in each column (5 columns)
- alldifferent in each diagonal (10 diagonals)

Latin Square Problems

x ₁₁	<i>x</i> ₁₂	<i>x</i> ₁₃	<i>x</i> ₁₄	<i>x</i> ₁₅
<i>x</i> ₂₁	<i>x</i> ₂₂	<i>x</i> ₂₃	<i>x</i> ₂₄	<i>x</i> ₂₅
<i>x</i> ₃₁	<i>x</i> ₃₂	<i>X</i> 33	<i>X</i> 34	X35
<i>x</i> ₄₁	<i>x</i> ₄₂	<i>x</i> ₄₃	<i>x</i> 44	<i>x</i> 45
<i>x</i> ₅₁	<i>x</i> ₅₂	<i>x</i> 53	<i>X</i> 54	<i>x</i> 55

- $x_{ij} \in \{1, 2, 3, 4, 5\}$
- alldifferent in each row (5 rows)
- alldifferent in each column (5 columns)
- alldifferent in each diagonal (10 diagonals)

OSS Latin

Latin Square Problems

Latin Square Problem of size 5

<i>x</i> ₁₁	<i>x</i> ₁₂	<i>x</i> ₁₃	<i>x</i> ₁₄	<i>x</i> ₁₅
<i>x</i> ₂₁	<i>x</i> ₂₂	<i>x</i> ₂₃	<i>x</i> ₂₄	<i>x</i> ₂₅
<i>x</i> 31	<i>x</i> ₃₂	<i>X</i> 33	<i>X</i> 34	<i>X</i> 35
<i>x</i> ₄₁	<i>x</i> ₄₂	<i>x</i> ₄₃	<i>X</i> 44	<i>x</i> 45
<i>x</i> 51	<i>x</i> ₅₂	<i>X</i> 53	<i>X</i> 54	<i>x</i> 55

1	2	3	4	5
3	4	5	1	2
5	1	2	3	4
2	3	4	5	1
4	5	1	2	3

- $x_{ij} \in \{1, 2, 3, 4, 5\}$
- alldifferent in each row (5 rows)
- alldifferent in each column (5 columns)
- alldifferent in each diagonal (10 diagonals)
- Latin Square of size 5 is satisfiable.

OSS Latin

Performance comparison of Latin Square Problems

Size	SAT/UNSAT	Sugar+m	Abscon	Mistral	bpsolver	Choco
3	UNSAT	0.57	0.66	0.01	0.03	0.41
4	UNSAT	0.59	0.63	0.01	0.03	0.41
5	SAT	0.73	0.68	0.01	0.03	0.58
6	UNSAT	0.79	0.82	0.03	0.17	0.73
7	SAT	0.94	0.78	0.01	0.04	0.77
8	UNSAT	1.01	676.75	-	-	-
9	UNSAT	1.08	-	-	-	-
10	UNSAT	1.16	-	-	-	-
11	SAT	1.35	-	-	-	-
12	UNSAT	1.66	-	-	-	-

• The table shows the CPU times (in seconds) of Latin Square Problems at 2009 CSP Solver Competition ("-" means timeout).

Effect of pigeon hole clauses

Size	SAT/UNSAT	Sugar+m	Sugar+m
		with p.h. clauses	w/o p.h. clauses
3	UNSAT	0.44	0.35
4	UNSAT	0.47	0.41
5	SAT	0.44	0.43
6	UNSAT	0.52	0.40
7	SAT	0.80	0.69
8	UNSAT	1.08	-
9	UNSAT	0.98	-
10	UNSAT	3.12	-
11	SAT	1.59	-
12	UNSAT	3.23	-

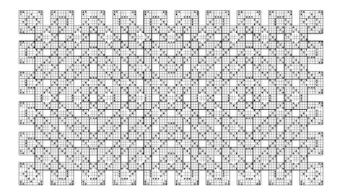
- Pigeon hole clauses drastically improve the performance in both cases of SAT and UNSAT.
- They are well suited to the order encoding, and only two extra SAT clauses are required for each all different constraint.

Demonstrations

- Huge Sudoku Puzzles
- Scala Interface

Sudoku Scala

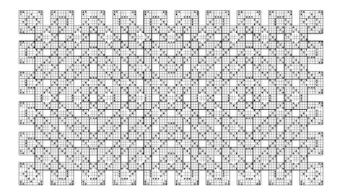
Huge Sudoku Puzzle



- It consists of 105 Sudoku puzzles of 9 × 9 overlapping at corners (created by Hirofumi Fujiwara).
- It contains 6885 cells, 1808 hints, and 2655 alldifferent constraints.

Sudoku Scala

Huge Sudoku Puzzle



- It consists of 105 Sudoku puzzles of 9 × 9 overlapping at corners (created by Hirofumi Fujiwara).
- It contains 6885 cells, 1808 hints, and 2655 alldifferent constraints.
- Sugar can solve it in 30 seconds.

Scala Interface of Sugar

Scala

- Functional OOPL on JVM (Java Virtual Machine)
- Java class libraries can be used.
- Both compiler and interpreter (REPL) are available.
- It is useful to define a DSL (Domain Specific Language).

SAT Encodings Sugar Examples Demo Summary

Sudoku Scala

Example of Scala Interface

Importing methods of Sugar

import Sugar._

Declaring variables

v('x, 0, 7) v('y, 0, 7)

Adding constraints

Search a solution

if (search)
 println(solution)

Naoyuki Tamura, Tomoya Tanjo, and Mutsunori Banbara

Solving Constraint Satisfaction Problems by a SAT Solver

n-Queens

n-Queens

```
import Sugar._
def queens(n: Int) = {
  val qs = for (i <- 0 to n-1) yield 'q(i)
  qs.foreach(v(_, 0, n-1))
  c(Alldifferent(qs: _*))
  c(Alldifferent((0 to n-1).map(i => 'q(i) + i): _*))
  c(Alldifferent((0 to n-1).map(i => 'q(i) - i): _*))
  if (search)
    do {
        println(solution)
        } while (searchNext)
}
```

Output

Map(q(2)->7,q(3)->5,q(7)->6,q(4)->0,q(5)->2,q(0)->3,q(6)->4,q(1)->1) Map(q(2)->1,q(3)->5,q(7)->7,q(4)->2,q(5)->0,q(0)->4,q(6)->3,q(1)->6)

Naoyuki Tamura, Tomoya Tanjo, and Mutsunori Banbara

Solving Constraint Satisfaction Problems by a SAT Solver

Summary

- We presented
 - Order encoding and
 - Sugar constraint solver.
- Sugar showed a good performance for a wide variety of problems.
- The source package can be downloaded from the following web page.
 - http://bach.istc.kobe-u.ac.jp/sugar/ Web
- Sugar is developed as a software of the following project.

CSPSAT project (2008–2011)

Objective and Research Topics

R&D of efficient and practical SAT-based CSP solvers

- SAT encodings
 - CSP, Dynamic CSP, Temporal Logic, Distributed CSP
- Parallel SAT solvers
 - Multi-core, PC Cluster

Teams and Professors

- Kobe University (3)
- National Institute of Informatics (1)
- University of Yamanashi (3)
- Kyushu University (4)
- Waseda University (1)

Pointers

- SAT and SAT solvers
 - Handbook of Satisfiability, IOS Press, 2009.
 - International Conference on Theory and Applications of Satisfiability Testing (SAT)
 - Journal on Satisfiability, Boolean Modeling and Computation
 - "The Quest for Efficient Boolean Satisfiability Solvers", CADE 2002 [Zhang & Malik 2002]
 - "An Extensible SAT-Solver", SAT 2003 [Eén & Sörensson 2003]
- SAT and LP
 - "Logic programming with satisfiability", TPLP [Codish & Lagoon & Stuckey 2008]
 - "A Pearl on SAT Solving in Prolog", FLOPS 2010 [Howe & King 2010]
- Papers on Sugar
 - "Compiling Finite Linear CSP into SAT", Constraints, Vol.14, No.2, pp.254–272 [Tamura et al. 2009] Open Access